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Abstract. Many systems, such as lamellar liquid crystals, block copoly- 
mers, ferrofluids and ferromagnets posses a one-dimensional periodic order. 
Cholesteric liquid crystals with large periodicity (say, 10 microns) represent 
a model system that allows one to directly determine layer configurations 
under a polarizing microscope and thus to study various elastic phenomena. 
We review recent studies of the secalled cholesteric "fingerprint textures" 
as an experimental model of two elastic effects: (1) distortions of the or- 
der parameter around an elementary edge dislocation and (2) undulations 
of layers in the magnetic field. Elastic distortions caused by the edge dis- 
location can be properly described only when the elastic free energy is 
supplemented by a non-linear term. Fitting the dislocation profile allows 
one to measure the penetration length of the system. With the known 
penetration length, one can verify the scenario of layers undulations in 
the magnetic field. The experiments reveal that the displacement of layers 
above the undulations threshold is much larger than the one expected from 
the Helfrich-Hurault theory which assumes that the boundaries impose in- 
finitely strong surface anchoring. A revised theory that accounts for a finite 
surface anchoring for a bounded lamellar system fits the experimental data 
well. The feature of finite surface anchoring allows one to find an analyt- 
ical description of undulations well above the threshold field, namely, the 
transformation of sinusoidal layer distortions into the saw-tooth distortions 
and reorientation of layers at the bounding substrates at very high fields. 
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1. Introduction 

Various condensed matter phases show layered structure with a one dimen- 
sional (ID) periodicity. The best known examp1e.i~ the smectic A (SmA) 
liquid crystal, in which the translational symmetry is broken along one spa- 
tial direction by periodic modulation of the mass density. The centers of - 
mass of elongated molecules are assembled in planes while the long axes 
of the molecules are on average perpendicular to these planes. An ideal 
distortion-free SmA can be imagined as a 1D stack of parallel planes sepa- 
rated by a constant distance do. In usual thermotropic SmA materials, do 
is of the order of (1-10) nm and corresponds to the phase shift 27r of the 
density wave. According to the Landau-Peierls argument [I, 21, the ampli- 
tude of layer fluctuations in the 1D stack diverges in the thermodynamic 
limit; therefore, there is no true long-range 1D periodic order. Fortunately, 
the growth of fluctuations with the system size is slow, and for samples 
of realistic thicknesses (say, less than 106do), the fluctuative displacements 
are small as compared to do (for numerical estimates, see, for example, [3]). 
The SmA is thus characterized by quasi-long-range order rather than true 
long-range order. 

As a result of the peculiar ordei, both bulk (elastic) and surface proper- 
ties of 1D-ordered materials are quite different from those of true 3D crys- 
tals. In what follows, we give a brief review of recent studies of two basic 
elastic phenomena in 1D-periodic systems: (a) layers distortions associated 
with an elementary edge dislocation and (b) development of layer distor- 
tions during the so-called Helfrich-Hurault undulations [4] in a confined 
cells with layers initially parallel to flat bounding plates. The undulations 
result from the competition between mechanical stresses or an applied ex- 
ternal field that tends to orient the layers along the normal to the plates, on 
one hand, and the surface forces that tend to keep the layers parallel to the 
plates, on the other. The studies demonstrate importance of the non-linear 
elastic term in the elastic free energy density and the role of finite surface 
anchoring at the boundaries of a 1D-periodic system. The structure of the 
review is as follows. 

The next Section 2 is of an introductory character. We first review the 
elastic theory of ID-ordered phases that neglects the details of the inner - 
structure of the layers (such as possible tilt of the molecules within the SmA 
layers). We describe the model system used in our studies, a cholesteric liq- 
uid crystal. The cholesteric liquid crystal has a periodicity in the range 
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accessible for direct optical observations (tens of microns) and is confined 
in flat cells of approximately the same thickness; in effect, one deals with 
a 1D-periodic structure with distortions allowed in a 2D plane. Lubensky- 
de Gennes coarse-grained model describes the deformed cholesteric state 



within the framework of the elastic theory developed for the SmA phase. 
We also recall some results on surface properties of layered systems, col- 
lected mostly for the traditional thermotropic SmA phases. Section 3 de- 
scribe theory and experiments on edge dislocations. The dislocation profile 
cannot be described properly without the non-linear term in the elastic free 

- energy. The experiment on the dislocation profile allows one to determine 
the important "elastic" or penetration length X of the lamellar material. 
Section 4 describes undulation phenomena in the lamellar phase, in which 
the non-linear term plays an important role. We briefly review the stan- 
dard Helfrich-Hurault model of undulations and then compare it to the 
experimental findings in the cholesteric periodic structure. The penetra- 
tion length determined in the experiment on dislocation serves as a fitting 
parameter. We find that the layer displacements are much larger than what 
the standard theory predicts. The discrepancies are caused by finite sur- 
face anchoring of layers at the boundaries of the cell. A modified theoretical 
model that takes into account the finite surface anchoring fits the exper- 
imental data well. Finally, we briefly describe the behavior of undulating 
layers in a very strong field. The idea of finite anchoring allows one to get 
a better insight into the structural distartions in this regime. 

2. Bulk Elastic and Surface Properties of Lamellar Systems 

Elastic deformations in the system of layers are of the two types: (a) curva- 
tures that leave the interlayer separation constant; the geometrical quanti- 
ties of interest are the mean curvature and the Gaussian curvature of layers. 
Figla; (b) dilations/compressions of layers, i.e., changes in do, Fig.lb. The 
corresponding free energy density that describes lwge bendings of layers 
and small dilations/compressions, is usually written in the form ( see, e.g., 

[51) 

where K is the splay elastic constant, is the saddle-splay elastic con- 
stant, R1 and R2 are the principal radii of curvature, B is the Young (or 
compressibility) modulus for the 1D stack of layers, and y = (d - 4)  /do 
is the relative difference in the actual (d) and equilibrium non-perturbed 
(do) interlayer separation. Using the classical results from the theory of 
surfaces (see, for example, [6]), the splay and the saddle-splay curvature 
terms in Eq.(l) can be re-expressed through the director field n (r), defined 
as a unit normal to the layers: 

1 1 
d i v n =  zk (& + $) ; Id iv(ndivn+n x curln) = - 

R1 R2 . (2) 



The mean-curvature term is related to the divergence of the director 
field. The saddlesplay term is of no importance in 2D geometries, since one 
of the principal radii of curvature is infinity. In 3D, because of its divergence 
nature, the saddlesplay term can be dropped when one is interested in 
smooth deformations that do not change the topology of layers. Transition 
from the flat layers to the weakly undulating layers is an example in which - 
the saddle-splay term plays no role. We will not consider this term in what 
follows. Note finally that Eq.(l) assumes that the inner structure of layers 
does not change under deformations; for example, in the SmA phase, the 
molecules remain perpendicular to the layers. 

2.1. WEAKLY DISTORTED SMECTIC A PHASE IN TWO DIMENSIONS 

In many situations of practical interest, the departures of layers from an 
ideal equilibrium flat configuration are small and the expression for the 
elastic free energy density (1) can be simplified. We follow [5].  

First of all, it is convenient to introduce a single scalar variable u, that 
describes the layer displacement field. If we choose the layers being per- 
pendicular to the z-axis, then a layer located initially at coordinate zo, is 
shifted to a new position z = zo + u (a;., z) as the result of the deformation. 
The equation of the deformed layer can be written as 

zo = z - U (x, 2 ) .  (3) 

The unit normal to the layers n, is expressed through the displacement 
field as n = zt-, or, by expanding in series and retaining terms 
up to the second order, as 

which allows one to rewrite the splay term as $ K (divn)l = $K ( B ' u ) ~  Z i = >  

Figla. Let us now express 7 through the displacement field: 7 = 9 = 
1 or -1 + = -1 + nl -n . v" ,  

The first-order derivative du/dz corresponds to compression or dilation 

of layers, Fig.lb. Standing alone, it would have a contribution 2 [ 12 
the energy density, in analogy to the Hooke's law. The derivative in the 
horizontal directions duldx describes uniform rotation of the layers, Fig.1~. 



The correction - 3 makes the compressibility term invariant with [ (a)2] 

respect to uniform rotations. By symmetry, a uniform rotation of layers, say 
by an angle 6 = duldx, should not change the energy. However, it leads to 
a change in an effective layer spacing measured along the fixed vertical axis, 
d + d l  cos 6. The effective strain is d (1 - 1/ cos 6) /d x -02/2 for a small 8. 
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Therefore the invariant form of the compression term is f B [g - f ( E ) ~ ]  
and the free energy density reads: 

The ratio of the two elastic moduli defines an important length scale 
X = d m ,  called the "penetration length." Far below the SmA-nematic 
transition point, X is of the order of interlamellar spacing. It is worth men- 
tioning the effect of fluctuations-induced renormalization of the elastic con- 
stants in Eq.(6), predicted by Grinstein and Pelcovits [7]: at sufficiently long 
wavelengths, B decreases to zero and K logarithmically increases to infin- 
ity. However, the changes are rather small, a few percent at the scales of 
100 microns for typical SmA materials [7]. 

The term f ( E ) ~  in Eq.(6) makes the theory nonlinear and compli- 
cates analytical calculations. In some cases, it is possible to assume that 

< 1, and consider only the linear model with the compressibility 

term f B (g  ) 2. One example, as we shall see below, is a dislocation profile 
in a material where the penetration length is much larger than the Burgers 
vector of the dislocation [8]. However, in most cases, the simplification can- 
not be justified. For example, the behavior of layers above the threshold of 
the Helfrich-Hurault undulation can be calculated only when the non-linear 
term is retained. 

2.2. LUBENSKY-DE GENNES COARSE-GRAINED MODEL OF THE 
CHOLESTERTC PHASE 

- Elastic properties of the lamellar systems were studied mostly for the con- 
ventional smectic phases. Their interlayer spacing is usually small, few 
nanometers in the majority of thermotropic and surfactant-based lyotropic 
smectic materials. There are some remarkable but rare exceptions in the 
dilute lyotropic systems with the period reaching 10-100 nm, see, for ex- 
ample, [9] and references therein. At these scales, it is hard to visualize 
the behavior and geometry of layers directly, say, under the polarizing mi- 
croscope. Fortunately, there are many other systems, such as cholesteric 
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Figure 1.  Various modes of deformation in a 1D lamellar system. 

liquid cryst'als, that have a period in the range of microns (easily accessible 
for direct polarizing microscopy observations) and exhibit elastic properties 
close to that of smectic phases [lo]. Note that unlike the smectic phases, 
the cholesteric phase does not have a periodic modulation of density: it is 
the orientation of the director that changes in the space, at the background 
of a constant mass density. 

The cholesteric phase is formed by chiral molecules (or chiral dopants to 
the nematic host) and is characterized by a unidirectionally twisted director 
(unbounded sample). The cholesteric pitch Po, the length over which the di- 
rector rotates by 27r, is usually in the range of 0.1-100 microns. According to 
the coarse-grained elastic model proposed independently by Lubensky [ll] 
and de Gennes [lo], when the scale of deformations (a radius of curvature) 
is much larger than Po, elastic properties of the cholesteric phase are close 
to that of smectic phase outlined above (see also [12]). The coarse-grained 
theory operates with the displacement field u (z, r).  The rotation-invariant 
free energy density for cholesteric deformations restricted to a 2D plane 
(x, 2) which is parallel to the cholesteric axis f i i  is exactly of the same form 
as the expression (6) above. The difference is only in the meaning of the 
elastic constants B and K.  The two constants can be related to the Frank 
constants of twist (K2) and bend (K3) in the F'rank-Oseen elastic energy 



density, traditionally used for the description of nematic and large-pitch 
cholesteric phases [lo]. Compression of the cholesteric structure changes 
the pitch, thus for an ideal stack of flat layers compressed or dilated along 
the helical axis, the correspondence is B = Kzqi where qo = 27r/P0. The 
bending of layers is the splay deformation of the cholesteric axis fi. The 
effective value of K has been calculated by considering an ideal cylindrical 
configuration of the cholesteric layers; it follows that K = 3K3/8. Of course, 
the relationships between the pairs (K, B )  and (Kz, K3) would be differ- 
ent from the formulas above when the cholesteric is confined between two 
glass plates since the surface anchoring would modify the ideal helicoidal 
cholesteric twist. Nevertheless, it is interesting to note that the penetration 
length given by X = 2 in this idealized model is noticeably smaller 
than Po/2, the period of an ideal unperturbed cholesteric helix. For exam- 
ple, with a typical K2 = 0.5K3, one obtains X = 0.34 (Po/2). In the realistic 
case of bounded and distorted cholesteric, X is the subject of experimental 
determination; note also that the true periodicity of a bounded cholesteric 
might be closer to Po rather than to Po/2, as discussed in section 3.2. 

2.3. SURFACE ANCHORING I 

The preferred orientation at the SmA boundary is most often " homeotropic" , 
with the director perpendicular to the surface, or "tangential", with the di- 
rector in the plane of the boundary, see, e.g., [13]. A rare case of tilted 
equilibrium anchoring has been reported for lyotropic biphasic systems, for 
the interface between the lamellar and sponge domains [14, 151. 

Historically, two different parameters have been used to characterize the 
anisotropy of the interfacial energy for SmA: (a) the "anchoring coefficient" 
Wa similar to its counterpart in the nematic phase, and (b) anisotropy of 
the surface energy, defined through the difference in the surface energy 
for tangential and normal anchoring, Aa = all - 01. To illustrate the 
difference between the two, we will assume that the homeotropic orientation 
corresponds to the minimum of the surface energy density. 

The anchoring coefficient Wa is introduced to describe small deviations 
from the equilibrium "easy axis" of surface orientation, through the formula 
that relates the work (per unit area) needed to deviate the director, to the 
angular amplitude 8 of this deviation; 8 is measured from the normal to the 
interface and is also equal to the angle between the layers and the substrate. 
In nematics, an approximate expression is of the form W (8) = ;waB2. In 
SmA, such an approximation might be valid only in some special cases, for 
example, when the surface layers periodically undulate. When the layers tilt 
is uniform along the boundary, it is more appropriate to expect that some of 
the smectic layers are terminated by dislocations, as in the model of tilted 



grain boundaries in solid crystals, see, for example, [16]. The anchoring en- 
ergy would be then proportional to the number of dislocations (assuming 
that the latter are well separated and do not interact for very small Os), i.e, 
it would be linear in 8 : W (8) = Wa (8) .  The coefficient Wa is expected to 
be much larger in the SmA phase than in the corresponding nematic phase, 
above the SmA-nematic transition, as the layered structure is incompatible 
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with tilted alignment at the surface [17, 181. Experimentally, Wa was found 
to change with temperature within the range Wa a (0.3 - 30) x ~ / m ~  
for the t hermotropic SmA material (4'- trans-butyl-4cyano-4-trans-heptyl- 
1,l'-bicyclohexane, E.M. Industries) [18]. The last result leads to the esti- 
mate W, a Bdo [18]. A similar estimate Wa FZ Kgo emerges as the coeffi- 
cient of the "intrinsic"po1ar anchoring in the cholesteric phase, related to 
the fact that uniform tilted orientation of the "easy axis" at the substrate is 
incompatible with the periodic cholesteric twist (=layered structure) [19]. 
In the nematic phase, this "intrinsic" layers-related anchoring is absent, 
and the polar anchoring coefficient Wa is usually few orders of magnitude 
smaller than Wa x Bdo in the SmA phase, see, for example [13]. 

The anisotropy Aa of the surface energy is introduced in a different 
context of large departures from the easy axis. These large departures are 
observed in textures with focal conic domains (FCDs) based on confocal 
pairs of ellipse and hyperbola, or, in the simplest case, a circle and a straight 
line, see Fig.2. As seen in Fig.2, when the circular FCD base is located at 
the interface, the layers are perpendicular to the bounding surface inside 
the domain and parallel to the surface outside the domain. Each time a 
circular FCD is introduced into the system, it changes the surface energy 
by - r2Aa and the elastic energy by - KT, where r is the radius of the 
base. If 0 1 ,  < al, the process is energetically favorable, as long as the 
domain is large enough, i.e. larger than the critical size r* - K/ (-Aa) 
[20]. Thus the FCDs serve as "facets" in bounded smectic samples when 
the interface favors tangential anchoring of the molecules. The feature is 
clearly visible in the SmA nuclei emerging from the isotropic melt [2:1] or 
in SmA droplets suspended in isotropic fluids [20]. For a SmA-isotropic 
melt interface [21] and for the SmA - glycerin interface, experiments yield 
r* - K /  (-AD) - lpm or less, so that lAo( 1 J/m2 [20] . Therefore, 
lAa( might be smaller than Wa. The reason is a non-monotonous character 
of the surface energy W (8) with two minima at 8 = 0 and 8 = 7~/2 and 
a relatively high maximum at intermediate values of 8 that corresponds to 
strong distortions of layers near the surface, see [17] for more details. 

3. Edge Dislocations 

Elementary topological defects in systems with broken translational sym- 
metry are dislocations. Dislocations have been an object of intensive studies 



Figure 2. A circular focal conic domain with a pair of defect lines: a circle located at 
an interface and a straight line passing through the center of the circle. 

mainly in solids with 3D periodicity [22]. There are substantial differences 
between these classic dislocations and dislocations in media with reduced 
dimensionality of order, such as smectic, eholesteric, or hexagonal phases in 
liquid crystalline, polymer and other soft-matter systems. These differences 
manifest themselves in dislocation profiles (configurations of the order pa- 
rameter associated with the defect), dislocation self-energy and interaction 
energy, see the book by Kleman [23] and the review by Holyst and Oswald 
[24]. Calculation of properties of dislocation lines is a classic problem of the 
elas tic theory. 

For an edge dislocation in a ID smectic system, the first solution has 
been suggested by de Gennes [25] within the framework of a linear theory, 
see also [23]. 

3.1. LINEAR THEORY 

In the linear approximation for the free energy density (6), in which the 
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compressibility term is just $ B  (2) , the corresponding Euler-Lagrange 
equation is 

Let the edge dislocation of the Burgers vector (0, b)  be centered at (x, z) = 
(0,O). The solution that satisfies the boundary conditions u (x < 0, z = +0) = 
0 and u (x > 0, z = +O) = b/2 (we consider the upper half-plane only, 



thanks to the symmetry u(z) = -u(-z)) is 

or, in other notations, 

where e r f  (...) is the error function defined as er f  (7) = 2 e-'ldt. The 
tilt of the layers around the dislocation, 

is significantly different from zero only inside the parabola x2 = 4zX; it 
decreases slowly with z on a typical distance $, and decreases rapidly 
with x inside the parabola [ l o ] .  The inflection points of the curved layers, 

2 
where $$ = 0, are located exactly at the z-axis (x = 0). 

au ax The above calculations, ~ ~ . ( 7 ) - ( l o ) ,  are valid if << 1. Within 

the parabola x2 = 4zX, the ratio is roughly equal to b/X, and 
is indepetldent of z. Therefore, the linear theory is justified only for the 
materials with b << A. If the last condition does not hold, one should 
consider the more general non-linear theory of Brener and Marchenko, see 
[8] and the next section 3.2. 

Experimental quantitative verifications of the edge dislocation profile 
are scarce. Maalorum et al. [26] used atomic force scanning microscopy to 
study the free surface profile of a smectic copolymer domain deposited onto 
a silicon wafer surface. Later, they developed a theory [27] to explain the 
observed profile by the surface-tension effects. However, to our knowledge, 
there is no experimental study on the dislocation profile in the bulk of a 
layered system [28].  

As pointed above, the linear theory is valid only for materials that 
satisfy the rather restrictive condition b << A. Clearly, the smallest Burgers 
vector is that of an elementary dislocation with b equal to the period of the 
structure. At the very same time, dimensional considerations suggest that 
X should be close in the order of magnitude to do.  Therefore, the condition 
b << X does not seem to hold in the majority of situations. For example, 
it is not expected to hold in the cholesteric structures, where X is supposed 
to be smaller than Po/2 .  Therefore, the cholesteric structures might be an 
excellent example of a markedly "non-linear" system. Below we describe 



experimental results on layers profile for an edge dislocation in the so-called 
"fingerprint" texture of a cholesteric liquid crystal. 

3.2. EXPERIMENTAL DISLOCATION PROFILE AND NON-LINEAR 
THEORY. 

As the system to study, we have chosen a cholesteric "fingerprint" texture 
with a period w -10 pm [29]. The fingerprint texture occurs when the 
cholesteric material is sandwiched between two flat glass plates that tend 
to align the helicoid axis in the plane of the cell. When viewed from above 
in polarized light, the periodic director distortions in the (x, z) plane of 
the cell result in a fingerprint-like texture. To avoid any in-plane torques in 
the sample, we coated the glass plates with an alignment layer (polyimide 
JALS 214 from JSR Inc., Japan) that orients the director perpendicularly 
to the plates. As a result, even when the external field is absent, surface 
anchoring greatly modifies the ideal cholesteric helicoid. First of all, the 
helix is somewhat unwind by surface anchoring at the glass plates. Second, 
the surface anchoring breaks the symmetry of the structure, making the 
period close to Po rather than to Po/2, i.e., w 2 Po, see [30] and the 
chapter by Shiyanovskii et al. in this book. 

Mylar films were used as spacers setting the cell thickness 1 =14 pm. 
Nematic liquid crystal 5CB was mixed with the chiral dopant CB15 to 
adjust the pitch Po to 14pm so that ZIPo - 1. When the cell is filled 
with the cholesteric mixture, a fingerprint texture occurs with characteristic 
"stripes" oriented randomly in the plane of the cell. To align the stripes 
along one direction, the texture in the cell was relaxed in the magnetic field 
till only a few well-separated (1 cm) dislocations were left in the system. 
The magnetic field was then switched off. The size of the cell was large 
(2.5 cm x 2.5 cm) as compared to the stripe periodicity to reduce the edge 
effects and to mimic the 'bulk' behavior of dislocations. We have observed 
only elementary dislocations with the Burgers vector b = w = 15 pm. An 
example of an isolated elementary edge dislocation is shown in Fig.3. 

Large period of the cholesteric structure allows for direct experimental 
determination of the displacement field u (x, z). The accuracy is about 0.4 
pm, determined mainly by the microscope's resolution. The location of the 
dislocation (x, z) = (0,O) was set at the tip of the semicircular end of the 
inserted layer, Fig. 3b. 

The layers profile of the edge dislocation does not fit the classical linear 
elastic theory, Fig.4. Namely, the inflection points of the layers are shifted 
away from the center line x = 0, towards the part x < 0 with smaller 
number of layers, in accordance with the qualitative predictions of Brener 
and Marchenko [8] and Kleman [31.] for systems with a small penetration 
length, X < w. The shift is visible not only near the core of the dislocation; 



Fagure 3. (a) A typical isolated elementary edge dislocation in a well-aligned cholesteric 
fingerprint texture. (b) Coordinate frame for profile measurement. Redrawn from [29]. 

in fact, it increases for the layers located further away from the core. There- 
fore, in order to describe the dislocation profile, one has to resort to the 
more general non-linear analysis [8] with the elastic energy density given 
by Eq.(6). The model leads to the following dislocation profile [8]: 

where erf (...) is the error function defined above. In the limit b << A, 
. 

Eq.(l l )  reduces to the result from the linear elastic theory [lo, 231 and 
Eq. (9). 

Figure 5 illustrates the basic features of the nonlinear solution, Eq.(ll)  
as a function of the ratio b/X = 0.2; 1; 10 and 100. We deliberately ex- 
aggerate the plausible range of the values b/X to highlight the qualitative 
features of the dislocation profiles. All figures show a half of the (x, z) plane, 
with z > 0. We remind that the linear limit is achieved at  b/X + 0, i.e., 



Horizontal Position (pm) 

Figure 4. Experimentally obtained profiles for the second through the eighth layers 
around an elementary edge dislocation. Thd data are fitted with the nonlinear theory, 
Eq.(ll). Experimental inflection points are marked by the dashed line. Redrawn from 
[291. 

the plots labelled " b / X  = 0.2" are the closest to the linear behavior. Part 
(a) of Fig.5 shows the geometry of layers. Part (b) represents the contour 
plots of the layers tilt duldx. Part (c) shows the dilations/compressions 

[g - i (g)2] of the layers, or, equivalently, the quantity Xd2u/az2 re- 

lated to the curvature. Note that according to Eq.(9) and Eq.(ll), the 
(dilation/curvature) ratio, defined as (g) / (B) in the linear theory and 

1% - $ (g)21 / ( g )  in the non-linear theory of dislocation, equals X in 

As seen in Fig.5, the main difference between the linear and nonlinear 
models is the asymmetry of the dislocation profile. In the linear theory, 
Eq.(9), the change in the displacement field mainly takes place in the range -a < x < and the points of inflection are located at x = 0. 
The nonlinear theory (11) predicts that the inflection points are located 
at z < 0. The displacement changes mainly in the region of negative x, 
with the lower boundary being lx,;,l - & > 6 [8]. This results in the 
effective shift of the displacement profile to the negative x's. If the ratio b/X 
becomes very large, the dislocation profile transforms dramatically, see the 
plots labeled " b/X = 100" in Fig.5. The structure of the dislocation becomes 
more and more similar to the model of a dislocation with a core that splits 





Figure 5. Properties of the edge dislocation according to the nonlinear 
Brener-Marchenko model Eq.(ll), as  a function of the ratio b / X :  (a) layers profile; (b) 

contour plots of layers tilt au/Bx; (c) dilations/compressions [E - 1 (2)  '1 of the lay- 

ers, or, equivalently, the curvature-related quantity Xa2u/axz. 

into a pair of disclinations, see Fig.6. The later structure has been proposed 
as an alternative model of a dislocation with a large Burgers vector, see [32] 
and [23]. 

We now return to the discussiori of the actual experimental profile. 
Figure 4 shows the experimentally measured displacements of the second 
through the eighth layers around the dislocation core. The displacement 
field was determined at a sharp border line between the dark and bright 
parts of the texture, indicated by arrows in Fig.3b. The first layer, which is 
too close to the core region, is disregarded. Evidently, the nonlinear model 
fits the experimental data much better than the linear model. Moreover, 
the nonlinear theory fits the whole set of seven layers presented in Fig.4 
with the very same pair of parameters: b = 14.9pm and X = 2.65pm. Note 
that the attempts to fit the data with the linear theory by shifting the 
layers do not allow to fit all the layers simultaneously, see [29] for more 
details. Therefore, the observed asymmetry in the displacement field is a 



Figure 6. An edge dislocation of a large Burgers vector split into a pair of two discli- 
nations (a) and a dislocation model with a vanishing A; the layers are mostly curved, 
dilations are reduced at the expense of a parabolic singular wall (b). Redrawn from [5]. 

real manifestation of the nonlinear elastic effects rather than an artifact 
associated with the setting of the coordinate frame. 

The outcome of the experiment above is not only the fitting of the 
dislocation profile with the non-linear theory, but also the experimental de- 
termination of the penetration length A. In the next chapter, this method to 
determine X will be used to verify the scenario of the undulation instability. 

4. Layers undulations (Helfrich-Hurault instability) 

An important feature of 1D lamellar systems (and 2D-positionally ordered 
columnar systems) is that the curvature deformations are capable of relax- 
ing mechanical or field-induced stresses. The layers profile around an edge 
dislocation is one example. Another example is that of layer undulations. 

Because of the material anisotropy, orientation of a layered system can 
be changed by external fields. For example, the magnetic field would ori- 
ent the layers parallel or perpendicular to itself, depending on the sign of 
diamagnetic anisotropy. The free energy density of the system depends on 
the angle between the director and the magnetic field H. In what follows, 
we consider the stack of layers originally perpendicular to the z-axis. The 
external field is directed along the very same z-axis, H = (0,O, H). The 
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diamagnetic contribution to the free energy density is - 5 ~ ~  (g)  , where 
c describes the strength of coupling between the layers and the field. In the 
SmA phase, c = -x,, where X, = - XI; and X I I ,  XI are the magnetic 
susceptibilities along and perpendicular to the director, respectively (we 
use CGS units). Normally, in the SmA materials X, > 0 and the external 
field directed along the z-axis would only stabilize the initial flat system 



of layers. However, in cholesterics, the effective value of xa (referred to the 
helical axis rather than to the local director) is normally negative, which 
makes the field-induced undulations possible. 

The total bulk free energy density of the 1D layered system in the 
external magnetic field thus reads [lo] 

The field-induced rotation of layers cannot be free if the system is 
bounded. The compromise between the surface and field action results in 
undulation of layers, also called the Helfrich-Hurault instability [4]. The 
field-induced phenomenon has a mechanical analog: undulations of layers 
can be caused by an imposed dilation [33]. In this case, the quantity X a ~ 2  in 
the last formula Eq.(12) is replaced by -B (a' - a) /a where (a' - a )  /a > 0 
is a relative dilation of the cell, see e.g., [34]. 

4.1. HELFRICH-HURAULT MODEL 

Let us briefly review the standard analysis of Helfrich-Hurault undulations 
[4, 101, in the 2D geometry of (x, z) plane. The layers are confined between 
two parallel "surfaces" placed at a distance a >> 1. We remind that 1 is 
the distance separating the glass plates, which does not enter explicitly the 
discussion of undulations in the (x, z) plane (this plane is parallel to the 
glass plates). The applied field (0,0, H )  directed along the normal to the 
layers tends to orient them parallel to itself (x, < O), but this reorien- 
tation is opposed by surface forces that keep the layers at  the boundaries 
immobilized, u (z = -a/2) = u (z = a/2) = 0, see Fig.7. The compromise is 
achieved by periodic undulation of layers that occur above some threshold 
field H,. For a 2D system, the undulation pattern in the (x, z) plane is 
assumed to be of a form [4, 101 

where q, = x/a; z = 0 corresponds to the center of the gap. To find the 
threshold field, one calculates the energy per one period of undulation from 
the energy density (12), retaining terms up to the order of ui: 

where t = rr is the diamagnetic coherence length. Considering f as E 
a function of qx with < as a parameter of a family of curves, the critical 



Free space-rotation 

Fagute 7. Scheme of layers response to the applied magnetic field. In free space, the 
layers rotate uniformly. In a bounded sample the layers undulate. 

field is obtained from the condition that f(q,, J) becomes tangent to the 
horizontal line for a particular = J,, Fig.8. At the minimum (q,, J,) of f, 
one has the condition q2 = & which yields the threshold field [4, 101: 

The corresponding wavelength of undulations along the horizontal x-axis 
is given by q2c = s. The last formula is also valid for the dilation-induced 
undulation instability; it was used to determine the penetration length X 
in thermotropic SmA by light scattering techniques, see [35] and references 
therein. 

In order to derive the displacement of layers above the critical field, 
we need to take into account the higher order term in uo, which means 
employing the non-linear theory, Eq.6. In vicinity of the transition, 

In analogy with Landau theory of the second order phase transition, one 
obtains uo (H) immediately above the threshold by minimizing (16) with 
respect to  uo [4, 10, 361: 



Figure 8. Plot of j as a function of q,, for various values of diamagnetic coherence 
length 5, see Eq.(14). The critical field of Helfrich-Hurault instability is obtained when - 
the curve f (q,,<) becomes tangent to the horizontal axis. 

The simplicity of the expression above offers an opportunity either to 
verify the predictions of the Helfrich-Hurault model, if X is known, or to use 
the model as an independent technique to determine the penetration length 
X [36]. Although undulation instabilities have been observed for many 1D 
layered and 2D columnar systems, including smectic [33, 371, cholesteric 
[38] and columnar [39, 401 liquid crystals, magnetic stripe phases [41, 421, 
ferrofluids [43] and apparently block copolymers [44, 451, we are not aware 
of any experimental data that would verify the predictions of Eq.(17). Rel- 
evant experiments on the model cholesteric system will be described in the 
next section 4.2. We will take advantage of the fact that the penetration 
length X can be measured in the independent experiments with the edge 
dislocation, section 3.2. 

4.2. UNDULATIONS PROFILE NEAR THE THRESHOLD: EXPERIMENT 

The model system with an undulating stripe pattern is created in two 
steps: (i) obtaining a uniform stripe texture in a cholesteric homeotropic 
cell similar to the experiment with the edge dislocation [29]; (ii) generation 
of undulations by a magnetic field applied in the plane of the cell. The 
magnetic field is applied in the direction z perpendicular to the cholesteric 



stripes to cause undulations, see Fig. 9 and 10. Since the separation 1 be- 
tween the glass plates is close to the pitch P, the system is quasi-2D and 
undulations occur only in the (x, z) plane parallel to the glass plates [46]. 
The mylar stripes serve as bounding walls. 

Side View Top View 

Figure 9. Geometry of the sample for the undulation experiment. 

Figure 11 shows the field dependence of the displacement amplitude u0 
(along the z-axis) of the layer initially in the middle of the cell, z = 0. 
According to the classic theory, Eq.(17), valid just above the threshold 
field Hc, the function uO(H/Hc) depends only on one material parameter, 
namely, the penetration length X = m. The threshold field Hc = ,/a depends also on the diamagnetic anisotropy X. of the material. The 

experimental data u0 (H/Hc) in Fig. 11 can be approximated by Eq. (17) only 
when X = (8.5 f 1.7) pm. On the other hand, independent measurements 
of the penetration length from the dislocation profile in the cholesteric 
mixture under study yields a much smaller length, X = (2.9 f 0.1) pm; this 
X is too small to allow Eq.(17) to describe the data in Fig.11. Thus the most 
plausible source of discrepancies between the experiment and the theory is 
the form of Eq.(17) itself. 

Equation (17) was derived in the approximation that the layer displace- 
ment is strictly zero at the boundaries. Closer investigation of the undu- 
lation textures reveals that the displacement of the very first layer at the 
boundary is actually nonzero, Fig.12. In the next section we re-analyze the 
undulation instability by taking into account the finite surface anchoring 
at the bounding walls. 



Figure 10. The experimental setup for polarizing-microscope observations of layers 
undulations in the magnetic field. 
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Figure 11 .  Comparison of the measured displacement amplitude with the theory. Dotted 
line shows uo predicted by the classical theory, Eq (17). The measured displacement falls 
between the two lines, Eq.(25) with q = 2.5 and 3.5. With the value B = 0.44J/m3 
estimated from the coarse grained theory, the upper and the lower curves correspond to  
the anchoring coefficient W, = 2.2 and 2.4 x 1 0 - ~ ~ / m ~ ,  respectively. 
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Figure 12. Undulation pattern near the mylar wall above the threshold field, 
H = 1.05Hc, where Hc = 0.65T. 

4.3. UNDULATIONS IN A CELL WITH A FINITE ANCHORING 

The free energy of the system, assumed periodically undulating along the 
x-direction, u (x) w sinq,x, is written (per one period 2.rr/q,) as 

where the surface term with the anchoring coefficient Wa is taken propor- 
tional to (au/az)' [lo]. It is a legitimate assumption since the tilt au/ax 
of layers is small and changes sign periodically along the x-axis. A coherent 
tilt with au/ax = const would require a lattice of dislocation and a surface 
term w (au/ax) .  

We first derive Hc and the undulation wavelength 2n/qzC at Hc. In these 
calculations, the fourth order term in u in Eq.(18) can be disregarded [4]. 
We relax the condition u (z = *a/2) = 0 and solve the Euler-Lagrange 
equation with boundary conditions following from Eq.(18). This yields the 
standard solution 

u (x, z) = uo cos q,z sin q,x (19) 
with constraints on the wave vectors q, and q,: 

where rc = -XaH2/B > 0. The function g (9,) is even in q, with two 
minima. When the ordinate of the two minima is B/Wa, the corresponding 



abscissa are f q,,. Minimization of g (9,) gives the condition n, = X2aqzc/a, 
which allows one to find the critical field of undulations in the cell with finite 
anchoring 

and the relationship between q,, and q,, from (20): 

sin qzca Here a = 5 1 - -) and 8 = (1 + qzca ). For Wa -+ oo, Eqs.(2l)- ( qzca 

(23) recover the results of the classic theory [4, 101, namely, H, = 4-, 
qzc = 5,  and q, = Ir/a. 

In order to calculate the displacement above H,, we retain the forth 
order term in Eq.(18). With Eq.(19), the energy density per one period of 
undulation immediately above the threshold is: 

where p = 6aq,, + 8 sinq,,a + sin2qZca. Minimization of Eq.(24) yields the 
dependence uo (H) above H, for the case of finite anchoring of layers at the 
boundaries: 

H, is specified by Eq.(22). The last expression (25) for uo reduces to the 
classic result Eq. (17), q = 1, when Wa + oo (as easy to see by calculating 
p, a, and with q,, = Ir/a). 

The dependence uo on the magnetic field H is of the same square-root 
character uo (HZ - H:) 'I2 as in the standard theory. However, the finite 
value of W, increases the value of uo, allowing for larger displacements as 
compared for the case when Wa + oo. In addition, finite Wa decreases the 
value of the threshold field H,. 

The coefficient q in Eq.(25) depends on A, a and Wa/B through the 
dependencies of p, a, and on q,,,which are the function of Wa/B, see 
Eqs.(21) and (23). A good fit of the data in Fig.11 is obtained for q = 
(3.0 f 0.5) (the only fitting parameter), X = 2.9 pm (measured indepen- 
dently in the experiment on dislocations) and a = 1.7 mm in Eq. (25). 

The fitted values of q corresponds to Wa/B = (5.2 f 0.3) pm. The last 
result leads to the estimate of the anchoring coefficient Wa = (2.3 f 0.1) x 
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1 0 - ~ J / r n ~  since in the coarse-grained model B ~ 1 :  Kn (%) sz 0 . 4 4 ~ / m ~ .  
The value of W, agrees in the order of magnitude with a dimensional 
estimate Wa ;;? K2? (g) = J/m2 that treats the surface anchoring as 

the 'intrinsic' anchoring of a lamellar system [17, 181 caused by a violation 
of layers equidistance near the surface, as discussed in section 2.3. The same 
estimate Wa sz K22 (g) was found in the studies of cholesteric oily streaks 

[19]. Note also that the finite Wa calculated above reduces the threshold . 
field Hc, see Eq.(22), by a factor of = 0.8 as compared to its classical value 
at W, + oo in Eq.(15). 

4.4. UNDULATIONS PROFILE WELL ABOVE THE THRESHOLD. 

At the onset of undulation, the layers are of a sinusoidal shape, Fig.13a. 
As the applied field increases above H,, the wave acquires higher Fourier 
components and a saw-tooth shape while simultaneously increasing the 
wavelength, Fig.13b-d. The maximum tilt angle of the layers in the saw- 
tooth wave grows quickly in the vicinity of Hc and become almost linearly 
dependent on the field, Fig.14. The, amplitude of layer displacement uo 
increases while its z-dependence becomes weaker at high fields. Eventually 
the displacement field u (x, z) appears to be z-independent in the middle 
portion of the cell. At the boundaries, the stripes are displaced slightly 
but remain continuous up to the field of IT. Above IT, the layers join the 
boundary discontinuously and form array of dislocations, Fig.13d. 

All the features of the high-field behavior, namely, the change to the 
saw-tooth profile, increase of the wavelength and increase of the undula- 
tion amplitude u0 have been seen experimentally in various systems. Seul 
and Wolf [42] used stripe magnetic domains in ferrimagnetic materials and 
directly observed these phenomena by changing the stripe periodicity. Fla- 
ment [47] et al. saw the same tendencies in the layered phase of a ferrofluid. 
Numerical simulation [34] confirmed these observations, too. Singer [48] 
took into account the higher order (u4 ) term in Eq.(18) and constructed 
a theory that can explain the behavior of u (x, z) near as well as far above 
Hc . 

To explain the weaker z-dependence of the layer displacement field 
u (x, y) at the field well above H,, Singer [48] used a single Fourier ap- 
proximation for the x-dependence: u (x, z) = 4 (2) sin qxx. With this form 
of u (5, Z) , the Euler-Lagrange equation for the energy functional Eq. (18) 
is 

where K = -XaH2/B > 0, as in the previous section. Note that Eq.(26) 



Figure 13. Undulation pattern at different fields. (a) 0.67T, (b) 0.75T, ( c )  0.81T and 
(d) 1.OT. 

contains a nonlinear term in q5 (z). The solution of Eq.(26) near the thresh- 
old is a single Fourier mode profile: 4 (z) - cos q,z. At H >> H,, however, 
the profile of q5 (z) flattens out except in the vicinity of the mylar bound- 
aries, see Fig. l3b-d. As a result, one can assume that z-dependence of the 
function u (x, z) is negligible [48]. The experimental data above confirm the 
validity of this assumption. At high fields, the layers tilt is approximately 
the same in the middle of the cell and at the bounding plates, since the finite 
strength of surface anchoring allows for significant tilt at the boundaries. 
The assumption that the layers profile at high fields becomes eventually 
z-independent greatly simplifies the analysis and allows us to obtain the 
layers profile analytically. 

First, we explain the field dependence of the tilt angle. Ignoring the 
z-dependence (du/dz = O), one writes the free energy density per unit area 
in (x, z) plane of the cell as 



Figure 14. Field dependence of the inclination angle 8 of stripes. 

where 8 = du/dx is the tilt of the layers, and 1 - P is the distance between 
the glass plates (="thickness" of the pseude2D slab). Since ( d ~ / d x ) ~  2 0, 
the minimum of Eq.(27) is obtained when 8 = f 6 = const.  The layers 
produce a saw-tooth (chevron) pattern with alternating u = &x and 
u = - f i x  zones. It also means that the tilt of the layers increases linearly 
with the field, 8 - IHI, as observed in the experiment at high fields, Fig.14. 

Let us now consider in greater detail the shape of undulating layers in 
the strong field; experimentally, it appears to be of a saw-tooth type. Singer 
obtained u (x) in an implicit series form [48]. 

Below we show that it is possible to directly solve the Euler-Lagrange 
equation for (27) and to obtain u (x) in a closed form. The Euler-Lagrange 
equation for the energy density (27) is 

i.e., equivalent to the equation of motion with a non-linear potential V (8) = 
- ~ 8 ~ / 2  + 04/8. After some algebra, one obtains a solution in the form 
x = x (8) , that is, the horizontal position x in Fig.9 as the function of the 
layer tilt 8: 

e2 Here m2 = M;L < 1 and eMaz is the maximum value of 8 (as shown 
4 n - B ~ o z  

above, OMax = fi when there is no z and no x-dependence of the layers 



profile). The periodicity L of undulation is given by 

dt 
where K' (m) = Sd 6 t 2 ) ( 1 - m 2 t 2 )  is the complete elliptic integral of the 
first kind. 

Equation (29) expresses x as a function of the tilt 9, whereas inverse 
expression is more preferable. In order to obtain it, we employ Jacobi's 
elliptic function. The elliptic integral of the first kind, 

is the functional relation between w and h with a parameter m. When w 
is expressed as a function of h, the relationship is specified by one of the 
Jacobi's elliptic functions, 

From sn function, we define cn and dn functions [49]: 

cnw = J-, dnw = dl - m2sn2w. (33) 

In the limit where m -+ 0, we have snh -+ sinh, cnh +cos h and dnh -+ 1. 
Referring to (31) and (32), the spatial behavior of the tilt angle is expressed 

Then layer displacement profile u (x) follows from integration of 9 (x): 

u (x) = 9 (2') dx' = OM,, log (-mcn (x, m) + dn (x, m)) + const. (35) /" 
Equation (35) describes an increase in the wavelength, increase in uo and 
change in the shape of undulation pattern towards more pronounced saw- 
tooth profile when the field-dependent parameter m increases.For small 
m, the displacement u (x) is sinusoidal. As m becomes large, u (x) exhibits 
a saw-tooth pattern with a longer periodicity, Fig.15. All these features 
are in qualitative agreement with the experimentally observed patterns. 
Note, however, that the radius of curvature at the ridges of the saw-tooth 
layers becomes smaller as the field increases, approaching the period of the 
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Figure 15. The graph of the function (35) for various values of m. 

layered structure itself; therefore, the coarse-grain approximation becomes 
less justified. 

5. Conclusion 

We have reviewed our recent studies of the cholesteric "fingerprint" tex- 
tures that serve as  a model of lamellar systems with 1D periodic order. 
Large (10 microns) periodicity of the cholesteric structures allows for a di- 
rect determination of layers configurations through polarizing-microscopy 
observations. 

First, we examined the displacement field of layers around an isolated 
elementary edge dislocation. Experimental data are well described by a 
recently suggested nonlinear model of dislocation [8]. In particular, the 
nonlinear effects manifest themselves in the asymmetry of the dislocation 
profile. Fitting the experimental data with the non-linear model allows 
one to determine the penetration length X = d v  which turns out to 
be significantly smaller (a factor of 5) than the period of the cholesteric 
structure. The last feature shows that the cholesteric fingerprint texture is a 
good examples of a " non-linear" 1D lamellar system in which the elastic free 

energy density in Eq.(6) should contain the correction term 

Second, we used the experimentally determined X to verify the theoret- 
ical predictions for the undulation instability. Undulations were caused by 
the magnetic field applied normally to the cholesteric stripes. Surprisingly, 
the amplitude of layers displacements above the threshold field turned out 



to be significantly larger than the standard theory predicted. Experimen- 
tal data suggest that the reason for discrepancies is the finite strength of 
surface anchoring at the walls that bound the sample. The standard theory 
assumes that the displacement of layers at the walls is always zero (infinitely 
strong anchoring). We modified the Helfrich-Hurault theory by accounting 
for the finite anchoring. The new model, see Eq.(25) and Fig.11, fits the 
experimental data near the threshold field well and leads to the estimate of 
the effective layers-related surface anchoring coefficient Wa - K (2.rrlP) , in 
agreement with the earlier experiments for SmA , Ref. [18] and cholesterics, 
Ref.[l9]. Furthermore, the idea of finite Wa helps to clarify the geometry 
of undulating layers well above the threshold field. Namely, finite anchor- 
ing allows the angular amplitude of layers reorientation in the high field 
to be practically the same in the center of the cell and near the bounding 
walls. The analysis of the layers profile at high fields is greatly simpli- 
fied since one can neglect the dependence of the tilt on the z-coordinate 
perpendicular to the walls. We have found an analytical solutions that de- 
scribe the essential features of undulations in the high-field regime, namely: 
the displacement pattern u (x) changes from sinusoidal to saw-tooth shape; 
both the wavelength and amplitude of undulations increase with field, see 
Eqs.(30)-(35). 
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