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PATTERNS IN THIN LIQUID CRYSTAL FILMS AND THE 
DIVERGENCE ("SURFACELIKE") ELASTICITY 

0. D. LAVRENTOVICH* AND V. M. PERGAMENSHCHIK* 
Liquid Ctyatal Institute, Kent State University, Kent, Ohio &8&2 

Thin submicron and micron films of liquid crystals placed between two isotropic media 
repnsent a particular example of confined systems. Such films can be prepared on the 
surface of glycerin or other liquids. In comparison with Langmuir monolayera, theee f i lm 
an macroscopically thick to involve the liquid crystalline order in the interplay between 
molecular structure and macroscopic organization. At the same time, the film an thin 
enough for such a strong competition between surface and bulk properties that tranai- 
tional in-plane symmetry is spontaneously violated and a number of patterns appear: 
stripe domains, squan lattices, strings, high strength defects and eo on. We show that 
these structures an governed by the divergence (or "sufacelike") KI3 and Kar terms in 
the nematic free energy which have been ignored for decades. We a h  show that both 
tenna can be included in the standard elasiticty theory without contradictions with the 
basic idea of the nematic phase. The one-dimensional confinement makes the f i lm a 
unique object of investigation: although the phenomena observed are attributed to the 
vertical confinement, their manifestation is detected in a non-restricted film plane. 

1. Introduction 

Thermotropic liquid crystal films placed between two different isotropic media (e.g. 
nematic film with free surface spread on a glycerin of water) represent an example 
of confined systems. The Langmuir trough is the most convenient instrument to 
prepare and modify these films. We will use the abbreviation LLC (Langmuir Liquid 
Crystal) for such liquid crystal films. The LLCs are related to the following popular 

- "soft mattern systems: 

i I .  Spreading isotropic liquid films are presently under study in order to com- 
t 
,v, 
.I 

prehend wetting and related phenomena.'t2 The macroscopic and microscopic 
parts of the spreading liquid films are controlled by different laws resulting in 
a nontrivial film profile. 

11. %ly suspended liquid crystal films provided rich infromation about surface 
interactions and effects of a reduced dimensionality on phase transitions and 
ordering over the last d e ~ a d e . ~ - ~  The studies have been carried out for smectic 
films freely suspended in air. Little is known about nematic free films which 
are hard to create and stabilize.lO*" Nevertheless, an astonishing phenomenon 
of the deformed ground state is described for these films." 

*Also with the Institute of Physics, Ukraininan Academy of Sciences, Kyyiv, Ukraine. 
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111. Langmuir monolayers of surfactant molecules anchored at an air/water 
interface.12-l4 As number of new phenomena results from an intriguing in- 
fluence of the microscopic properties (molecular structure, chirality, electric 
dipole moments of surfactant molecules, concentration of ions in the subphase) 
on macroscopic patterns.12*13 The Langmuir monolayers can be classified using 
the nomenclature of smectic liquid crystals.12 However, in monolayers there is 
no adjacent layer to couple to Ref. 14 and, consequently, there is no interplay 
between the surface and bulk forces. .c- 

\ 

IV. Usual liquid-crystal  cell^.^^*'^ A rigid plate restricts director deformations in a 
cell because the anchoring forces keep molecules oriented along some preferred 
axis in both azimuthal and polar directions. It is hard to investigate the effect 
of low dimensionality using these cells because the thickness of the cells is 
typically larger than 1 pm. 

V. Confined liquid crystals in the form of dispersed microdroplets, thin capillar- 
ies and porous media filled with liquid crystals represent rather new fields of 
research activites. A variety of new phenomena caused by the confined geome- 
try has been observed r e ~ e n t l ~ . ' ~ - ~ '  In particular, the studies have provided a 
strong evidence that the surfacelike K24 elastic term cannot be ignored in the 
nematic free e n e r g ~ . ~ l - ~ ~  r 

Current research on systems I-V represents a scientific boom. The LLC's are 
expected to exhibit even more interesting behavior because of the following reasons. 

(i) In comparison with spread isotropic liquid films, the LLC films have ori- 
entational ordering which is coupled to the flow and thus modifies wetting 
b e h a v i ~ r . ~ ~ . ~ ~  

(ii) In contrast to films freely suspended in air, the LLC films are in contact with 
two diferent media. Therefore, the molecules have diferent polar orientation 
at  the two interfaces, for example, perpendicular at the upper surface and tan- 
gential at the lower one. This hybrid alignment results in vertical deformations 
of the director field 30931 (Fig. 1). An unexpected consequence of such a ge- 

- ,  

ometry is an app&ance of states with periodic and non-periodic horizontal 
deformations and with broken chiral symmetry (even when the LLC film is 
composed of a simplest non-chiral nematic phase).3246 "-. 

(iii) The Langmuir monolayers are too thin to exhibit elasticity in the direction 
normal to the film plane. The LLCs possess an additional "e1astic"degree of 
freedom: they are thick enough (lo2-lo4 moecules) to demonstrate the role of 
intrinsic liquid crystal ordering in the interplay between the molecular structure 
and macroscopic organization. Note also that the LLC surface can produce a 
symmetry breaking caused by molecular dipoles47; a similar effect is well-known 
for Langmuir monolayers. However, there is another remarkable possibility of 
the polar symmetry breaking in the LLC: director deformations in the vertical 
plane lead to so-called flexoelectric polarization15 which is analogous to the 
piezoelectric effect in solids. 
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(iv) In contrast to  usual liquid crystal cells, equilibrium states of LLC are not 
masked by azimuthal anchoring. Furthermore, the LLC films can be made thin 
enough (- 1 pm and thinner) for the surface and bulk properties to compete 
(the ratio of the bulk elastic constant K to  the surface anchoring coefficient W 
is typically - 1 pm). Consequently, LLC's might demonstrate the role of such 
delicate mechanisms as splay cancelin$Of I3 and divergence e l a s t i ~ i t ~ ~ ~ f  Dp4346 

? 

in pattern formation. In addition, there is a coupling between the director 
distribution and the film profile.42 

(v) The LLC films are very different from other confined liquid crystalline sys- 
. .. terns such as suspended droplets or porous heterostructures because of the 

one-dimensional character of confinement. The phenomena caused by the con- 
finement in one direction manifest as patterns in other two unrestricted dimen- 
sions. Therefore, these objects are relatively easy to study by means of optical 
met hods. 

Liquid crystal films placed on the isotropic substrate reveal many interesting 
properties connected with the peculiarities mentioned above: small (micron and 
submicron) thickness, difference in polar orientation at the two surfaces and absence 
of azimuthal anchoring. The most striking effect is the appearance of different pat- 
terns with horizontal deformations of the diiector field. The purpose of this review 
is to  describe basic patterns formed in the LLC films and their connection with 
the problem of the divergence terms in the free energy. Note that we will operate 
with the free-energy functional derived for three-dimensional systems rather than 
with the two-dimensional version often used in the theory of Langmuir monolayers. 
In some cases the underlying physics can be illustrated equally in both two- and 
three-dimensional approaches. In fact, both Langmuir Liquid Crystals and Lang- 
muir Monolayers show a number of similar patterns, such as stripe domain phase. 

Fig. 1. Nematic film placed between two isotropic media "1" and "2". The media "1" and "2" 
generally impose different polar surface orientation of the director n (angles 01 and 02, respec- 
tively). As a result, n is distorted in the vertical plane. The azimuthal (in-plane) orientation of 
n is not fixed because of the isotropic nature of "1" and "2". The normal to the film surface is 
denoted k. 
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However, a complete description of the LLC films which includes both bulk elasticity 
and finite surface anchoring requires the general three-dimensional approach. 

2. Basic Proper t ies  of the Hybr id  Aligned Films 

The experimental situation we are referring to is a film of thermotropic liquid crystal 
placed onto an isotropic substrate of different chemical nature, Fig. 1. In principle, 
the isotropic substrate can be the melted phase of the liquid crystal i t ~ e l f . ~ ~ - ~ l  .- 
However, these biphasic systems are rather hard to investigate, since one has to 
create a temperature gradient. As a result, it is difficult to fix and measure the 
thickness of the liquid crystal film or to  use temperature as a control parameter. 
Another problem is that the director distrotions in the film can affect the shape of 
the surface itself's*52 because both the interfacial tension and difference in density 
of the two phases are relatively small. 

The LLC films floating on isotropic substrates of a different chemical nature are 
easier to investigate than biphasic systems. The temperature gradient is absent, and 
the parameters of the films can be controlled. Furthermore, the surface tension a a t  
the liquid crystal-isotropic fluid and liquid crystal-air interfaces (- J/m2)s3 is 
usually a few orders of magnitude higher than the nematic-isotropic interface tension 
(reporteds4 to  be 10-4-10-5 J/m2). High u magnitude together with typically large 
difference in density of the liquid crystal ,and the isotropic fluid substrate (- 2 x lo2 
kg/m3 for 5CB - glycerin system) decrease the interplay between the isotropic part 
of the surface energy and the elastic forces. 

There are three crucial features of the LLC films that make their properties 
unique: 

(1) The polar tilt angles and 82 of the director n a t  the two surfaces are generally 
different, since the two ambient media are different. This difference acts as a 
source of director deformations in the vertical direction. A nematic film with 
different polar orientation of n a t  the upper and lower interfaces is called a 
hybrid aligned nematic (HAN) film. 

(2) Because of the isotropic nature of the ambient media, the molecular interactions 
at the both interfaces do not determine the azimuthal orientation of a liquid 
crystal. In other words, the azimuthal anchoring energy is zero, and the director 
configurations can rotate in the film plane without any energy cost. Since 
the boundary conditions are azimuthally degenerate in the film plane, it is 
relevant to denote a nematic LLC film as a HAND film, where D indicates such 
a degeneration. 

(3) The thickness of the film is comparable with or smaller than the de Gennes- 
Klbman anchoring length 1 = K/W. Here, W .V (lo-' - 1 0 - ~ J / r n ~ ) ~ ~  is the 
anchoring coefficient which characterizes the work needed to deviate the director 
from its equilibrium orientation at the surface. To illustrate the concept of the 
anchoring coefficient, imagine a surface that provides a normal orientation of 
n. The minimal value of the surface free energy a(@) is a1 = a(8  = 0). Any 
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changes in the tilt angle increase the surface energy. If the function u(0) is 
monotonous, then the maixmum all = u(0 = n/2) will be reached at 0 = n/2. 
The anchoring coefficient W can be defined as the difference all - u l .  The 
anisotropic part of the nematic surface energy is usually much smaller than 
the isotropic part, i.e. W << u11,ul. Typical values of the elastic constant 
K - lo-" N give 1 - 0.1-100 pm. Consequently, the balance of the surface 
anchoring and bulk elasticity is of prime importance for the LLCs. Moreover, 
as we shall see, pattern formation in LLCs films is strongly influenced by the 
divergence elasticity. 

The first LLC-like samples were prepared on a water substrate by Press and 
Arrott30 and by Proust, Perez hnd Terminassian-Saraga31 twenty years ago. These 
pioneering studies focused on the balance of bulk elasticity and surface anchoring31 
and on the properties of usual point defects with strength m = 1. Later s t ~ d i e s ~ ~ - ~ ~  
have revealed many interesting structures in the LLCs that do not occur in other 
soft matter objects. The microphotographs in this review represent the polarizing- 
microscope textures observed in thin nematic and smectic A LLC films. In most 
cases a glycerin substrate is used. External fields as well as temperature gradients 
are absent. The textures reveal many striking features, such as defects with high 
strength m( > 1,36 and different periodic domain patterns.34*35 The ability 
to form periodic spactial structures either 'due to specific molecular interactions 
(cholesteric, smectic, and blue phases) or under the influence of electric or magnetic 
fields is one of the most important and well-known properties of liquid crystals. In 
the present case, however, one deals with translationally symmetric (nematic) phase 
under no external field action. 

Despite the absence of external fields or temperature gradients, the sophisticated 
patterns in LLCs are not without a special reason. Evidently the cause is the balance 
of the elastic forces and surface interactions. Full description of the patterns is not 
a simple problem since both elastic and surface properties of liquid crystals are 
surprisingly far from being completely understood. One of the controversial issues 
is the secalled "surfacelike elasticity", represented in the free elastic energy by the 
divergence terms. 

r 

3. Frank-Oseen Free Energy: the Pure "Bulk" and "Suracelike" 
Ka4 and KI9 Terms 

The standard situation in the field theories of elementary particles and condensed 
matter is that the free energy terms which have the form of a total divergence can be 
omitted. Liquid crystals present a unique situation where divergence terms (often 
called "surfacelike" terms) are, in fact, meaningful. Although these terms, called 
K13 and K24 terms, are derived on the equal basis with all other terms of principal 
order, for about fifty years they have been disregarded. Inclusion of these terms in 
the elasticity theory seemed to  be even more murky than the reasoning to disregard 



them and the problem of divergence terms has been a fundamental puzzle in the 
macroscopic physics of liquid crystals. 

The conventional free elastic energy functional quadratic in the director deriva- 
tives can be written as 

F 2  = dV{f~ - K24V' [n(V.  n )  + n x (V x n)] + K13V - [n(V.  n)]) , (1) 1 
where 

-. 
The coefficients are called splay (Kll) ,  twist (KZ2), bend (K33), mixed splay-bend 
(K13), and saddle-splay (KZ4) elastic constants. 

The divergence K13 and K24 terms can be converted to surface integrals by the 
use of Gauss's theorem so that F2 becomes 

where 

f24 = -Kzdk[n(V . n )  + n x (V x n)] , (4) 

and k is a unit vector of external normal to the surface S of the sample. 
Owing to  Eq. (3), the divergence terms are often called "surfacelike" in spite 

of the entirely common nature of all the five elastic terms: all the five represent 
specific fractions of the bulk free energy density. Moreover, as we shall see, the pure 
"bulk" terms fF also contain a "surfacelike" contribution. For this reason, keeping 
the word "surfacelike" in quotes would be most appropriate. 

The f24 and f13 terms were introduced firts by Oseen5' and zocher5'; they 
were subsequently abolished by Fkank5", and were then reinstated by Nehring and - 
S a ~ p e . ~ ~  Although similar terms have also been explicitly introduced for superfluid 
3He 60~s1 and can be introduced for f e r r ~ m a ~ n e t s , ~ ~  they have been essentially 
ignored. - 

The standard reasoning for such an ignoring is borrowed from field theoriess3 
similar to the one-constant version of the elastic theory of the nematic phase. 
Namely, all the terms in Eq. (2) (taken with equal coefficients) are allowed by 
the symmetry for arbitrary vector field n ,  and therefore the free energy of such a 
vector field can be written in the form (V n)2 + (V x n)2.  However, usually the 
field n is assumed to  rapidly decrease towards the infinitely removed surface so that 
all divergence contributions are negligible. Then, by making use of the identity 

3 

(V n)' + ( V  x n)' = (ainj)(anj)  + V . [n(.n) + n x ( V  x n)] (6) 
i,j=l 
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the divergence term is separated from the total functional, and only the first term 
is retained, which is a pure bulk term. 

Liquid crystal systems, in contrast, have actual surfaces whose specific shape and 
properties are known t o  be important. The disregard of divergence terms cannot 
be justified unless material parameters K13 and K24 vanish. There is, on the other 
hand, no fundamental reason why Kl3 and K24 should vanish or be negligible. 
Indeed, several different microscopic calculations have yielded for K13 and K24 the 
values of the same order of magnitude as for the standard F'rank 
At the macroscopic level, it is easy to show that the status of the "surfacelike" 
constants is similar to those of the F'rank constants. A good illustration of that is 
the radial director distribution in a spherical nematic droplet (secalled hedgehog) 
which is given by n = r / ~  in the spherical coordinates (more complicated textures 
in droplets have been considered n ~ m e r i c a l l y ~ ~ > ~ ~ ) .  The free energy of this radial 
"hedgehog" is 

Fh = 4~R[K11 + (Kl1 - 2K24) + 2K13]. (7) 

Only the first term in Eq. (7) is a contribution of the "pure bulk" splay term in the 
right hand side of Eq. (6). The second term (K11 - 2K24) is the total contribution 
of the terms that functionally coincide with the K24 term. Its K1l fraction is 
hidden in the F'rank sum fF, and only the 2Kz4 fraction corresponds to what is 
usually supposed to  be the K24 term itself. Equation (7) clearly shows that the 
"surfacelike" and "bulk" terms are equally important even in geometries with a 
small surface/volume ration, i.e. when R + oo. 

The contribution of the divergence terms strongly depends on the geometry of 
deformations. For example, the K24 term is always nonzero for topologically stable 
point defects such as  hedgehog^,^' b o o j u m ~ ~ ~ . ~ ~  or focal conic  domain^^^^^^ but 
vanishes for the cylindrical radial distribution." Generally, if n depends only on 
one Cartesian coordinate, the K24 term vanishes identically. At the same time, 
the KI3 term never identically vanishes and might contribute in any geomtery. 
Thus, smallness or nonsmallness of the contribution to the free energy has nothing 
to do with a divergence character of the term, but it is defined by the value of 
corresponding elastic constant and the specific geometry of a problem. 

,- An essential difference between fF and divergence terms exists however. The 
matter is that fF is positive definite whereas both the K24 and K13 terms are not. 
Therefore, the K24 and K13 terms can cause spontaneous deformations. This ability 
of the divergence terms is strongly enhanced in geometries with topologicaJ defects 
or with strong elastic deformations. We shall see that in thin HAND films these 
terms can cause spontaneous deformations violating parity, transitional and chiral 
symmetry. 

Until recently there was a considerable doubt that the surfacelike terms could 
be introduced without any paradoxes. The present situation is that the K24 term is 
shown to give rise to no a m b i g ~ i t ~ . ~ ' - ~ ~  There are several experimental estimations 
of K24 for nematic liquid ~ r ~ s t a l s ~ ~ - ~ ~ ~ ~ ~ ~ ~ ~  ((K24( - K) as well as of the correspond- 
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ing constant K in lamellar smectic  phase^.'^*^^ We shall consider effects associated 
with K24 term in Sec. 5 

The problem of the K13 term has required much more theoretical effort. Very 
recently, it was shown that the K13 term can be included in the standard elasticity 
theory without contradiction with the basic ideas of the nematic phase. 73 We shall 
consider this problem in Sec. 9. 

4. The  Homogeneous Sta te  of a Hybrid Aligned Nematic Layer 
+ 

Let us consider a nematic layer parallel to the (x, y) plane and normal to the z- 
axis (Fig. 1). The lower z = 0 ("1") and the upper z = h ("2") surfaces impose, 
respectively, tangential and normal (perpendicular) orientations degenerated in the 
(x, y) plane. Such a layer is what we call a HAND film. 

We shall use the standard parameterization of the director 

where 8 is the angle between n and the z-axis, cp=arctan (n, Jn,). For a sufficiently 
thick HAND film, only the homogeneous state is realized. In a homogeneous state 
deformations are restricted to the vertical plane (x, z) and depend on a single vari- 
able z : 8 = B(z),cp = 0; therefore, fir 0.  If anchoring is stronger on the 
tangentially orienting surface 5'1 i.e. Wl > W2, and the films is thinner than74 

then n is undistrubed in the veritcal plane: B(z) = 7rJ2. Here and henceforth we 
use the Rapini-Papoular anchoring potential, W(0 - 8) = $Wa sin2(8 - &), where 
~ = 1 , 2 a n d 8 = ; , 8 ~ = 0 .  

In the approximation K11 = Kg3 = K,  which will be used henceforth, the 
homogeneous state of HAND film is completely determined by the formula 

where a = (81 - 02)/h. The boundary values 6'2 and 01 of the angle B can be found 
from the equations 

2(02 - 81) + h(W2IK) sin 202 = 0 ,  (11) 

2(02 - 81) + h(Wl/K) sin 281 = 0 ,  (12) 

For a sufficiently thin HAND film, the homogeneous state (10) becomes ustable 
with respect to various perturbations 68 = @ and cp when the free energy of the 
perturbed state F*,, is lower than the energy of the homogeneous state FHS. The 
critical condition for the transition is FHs - F*,, = 0. We shall describe different 
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forms and mechanisms for nonzero 11, and cp to occur in thin HAND films. In what 
follows we shall use the notations t = K22/K and p = 2Kz4/K. 

5. P a t t e r n s  a n d  t h e  K24 Elastic Te rm 

5.1. K24 mechanism of  symmetry breaking in the absence of 
twist deformations 

How can the nematic layer with vertical curvature of n and zero aximuthal anchoring 
(Fig. 1) gain the energy? Surprisingly, the total energy of distortions can be reduced 
by additional deformations in the film plane. This can be illustrated by the following 
example.36~39~44 

Let us consider the situation where twist deformations are absent and n is per- 
pendicular to a set of surfaces X ' s  (Fig. 2). Each point of the surface C is charac- 
terized by two principal radii of curvature R1 and R2 that define the mean curvature 
(l/R1 + 1/R2) and the Gaussian curvature l/R1 R2 of C. The signs of R1 and R2 
depend on the orientation (parallel or antiparallel) of the vectors R1 and R2 with 
respect to the chosen normal to  C. For example, a sphere and an ellipsoid have 
only points with 1/R1 R2 > 0; in contrast, a hyperbolic paraboloid (saddle surface) 
has only points with l /R1 R2 < 0. , 

Using the mean and Gaussian curvatures, the splay and K24 terms can be reex- 
pressed as16: 

V . [n(V . n) + n x (V x n)] = 2/R1 R2.  (14) 

The difference in the polar anchoring sets the non-zero value of one of the prin- 
cipal radii of curvature, say, R1. The homogeneous HAND film (Fig. 2a) is char- 
acterized by finite R1 and infinite R2 (Fig. 2d). As a result, for the homogeneous 
HAND state the splay term is equal to K11/2RT, and the K24 term is zero. 

In the states with horizontal dformations (Figs. 2b and c) both radii are finite 
(Figs. 2e and f).  The splay contribution 1/2Kll ( l / R l +  1/R2)2 decreases when R1 
and Rg are of opposite signs (so-called splay-canceling rnechan i~m,~~  Figs. 2b and 

.' e. Furthermore, with finite R1 and R2 there is another source of the energy gain: 
the K24 term becomes nonzero and reduces the total energy when (-K24/R1 R2) 
is negative. In contrast to bulk elastic moduli, K24 can be either positive or nega- 
tive. Thus, K24 < 0 favors deformations with l/R1 R2 < 0, while KZ4 > 0 favors 
l/R1 R2 > 0 (Fig. 2). 

Equations (13) and (14) show that the term responsible for the splay-cancelling 
and the K24 term functionally coincide. Thus, although it is sometimes useful to 
consider the splay canceling and K24 mechanisms separately, these mechanisms, in 
fact, are of the same divergence nature. As a consequence, we shall see that the 
total contribution of the term V [n(V . n) + n x (V x n)] to the free energy is 
proportional to (1 - p) rather than to (-p). 



Fig. 2. Director distribution in a uniform HAND film (a) and in deformed states with m = 1 point 
surface defect (b.c). The Gaussian curvature (R1 RZ)-' of the surfaces perpendicular to n is zero 
for the uniform HAND film (d), and nonzero negative (e) or positive (f) for the two defect states. 

Qualitative consideration prompts that the states deformed both in the vertical 
and horizontal plane. can be energetically preferable than the naively expected h e  
mogeneous state (10) because of non zero Gaussian curvature and zero azimuthal 
anchoring. These states can be used in a number of independent methods for deter- 
mination of K24. For example, K24 defines the film thickness threshold for periodic 
stripe  domain^.^^*^^ The stripe domains behavior under the action of external field43 
or with thickness variations45 also allows one to measure K24 (Sec. 5.4). Another 
approach is based on the peculiarities of strings3@ (Sec. 5.3). 

5.2. High strength defects 

5.2.1. Low strength defects in conventional cells 

In thin flat nematic samples one observes textures with dark brushes. The brushes 
occur in areas where director n is parallel to either polarizer or analyzer of the 
microscope. Usually, defects possess the following properties; 

1) The distribution of n around the defect is symmetrical. For example, if n is 
confined to the horizontal (x, y)-plane, then n, - cosmcp , n, - sin mcp. Here, n 
is the stength of the defect defined as the number of revolutions of n by multiples 
of 27r in going once around the defect core; m = f 112, f 1,. . . . 
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2) There is a simple relation between m and the number N of dark brushes in the 
corresponding defect texture75: 

3) High-strength (Iml > 1) defects are prohibited. The higher m implies the greater 
curvature of n and, as a result, the greater elastic energy F. For the planar 

.- n,16F m2, and one observes only points with N = 2 or 4, i.e. m = f 112 
and m = f 1. Rare cases of N > 4 textures have been observed in rather ex- 
otic nematic systems: lyotropic-theermotropic mixtures,76 mixtures with special 
i m p u r i t i e ~ , ~ ~  and polymer nematic liquid crystals.78 

4) Any defect with m # 0, as well as any nonuniform state with m = 0, costs 
an elastic energy which is greater than the energy of the uniform state (for the 
latter, m = 0 by definition). 

Quite surprisingly, as we will see below, for the LLCs the above statements 1)-4) 
are f a l ~ e . ~ ~ ~ ~ ~  

5.2.2. Textural observations for hybrid aligned films 

When observed under a polarizing microscope, LLC films with hybrid boundary 
conditions and thickness 1 pm 5 d 5 20pm exhibit rich arrays of point defects 
located a t  the lower surface of the film (favoring tangential orientation of n).  From 
a topological point of view, these surface point defects are b o o j u m ~ ~ ~  described first 
by Mermin for superfluid anisotropic liquid 3He-A.80 The main difference between 
boojums and bulk point defects (hedgehogs) is that the boojums cannot be moved 
away from the boundary. 

Points with large N > 4 N = 6,8,10,16 and sometimes even N = 3,5,7, 
etc.) are often observed in the HAND films, see Figs. 3 and 4, and Refs. 36 and 
44. This is quite surprising, since N > 4 would normally mean that Iml > 1, 
see Eq. (15). The brushes are distributed nonuniformly: the angle < between two 
successive brushes is different for different sectros of the defect texture. There is 
a sector in the horizontal plane where < = 90°, and there are one or few sectors 
where < is much smaller ( 5  10"). Inside the first larger sector ( a  5 cp 5 27r, sector 
I), the distribution is radial as for the m = 1 defect (Figs. 3a and 3b). The scarcity 
of the director revolutions up to m # 1 is filled up in the remaining narrow sector 
(0 5 cp 5 a, sector 11). Figs. 3b and 4b. The sectors with high director curvature 
gradually transforms into strings of constant width (Sec. 5.3) that go away from 
the defect center. 

In the vicinity of the defect center, n(x, y, z) may be approximated as 

n, = sin B(z) cos Mcp(x, y) , n, = sin B(z) sin Mcp(x, y) , n, = - cos B(z) ; (16) 

here, M = MI = 1 for sector I, and M = MII = 1 + 27r(m - I) /@ for sector 11. 
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Fig. 3. Texture (a) and structure (b) of a high-strength defect with m = 2 in a HAND film of 
5CB placed on the isotropic substrate of glycerin. Annihilation of the m = 2 and m = -1 defects 
(c) results in the m = 1 defect (d). 

The existence of points with N = 6 (Fig. 4) or 10 brushes36 (generally, N = 
4k + 2, where k is integer) is especially surprising. In accordance with Eq. (15), 
these textures must correspond to  half-integer strength defects, Iml = k + 112. On 
the other hand, half-integer defects are prohibited by the polar symmetry of the 
HAND film. Indeed, for the horizontal projection n,, of the director field one has 
n,, # -n,,, and the point defect with half-integer Iml should contain a singular 
line where two regions with opposite directions of n,, met. 

The paradox with nontrivial N is caused by the fact that Eq. (15) is not valid in 
the general case. Equation (15) was derived under the assumption that the defect 
possesses a symmetrically deformed structure, which is not the case of defects in 
HAND films. For example, Fig. 4 illustrates a singularity with N = 6 .  However, it 
is m = 0 rather than the m = f 312 defect, because all brushes in Fig. 4 form loops, 
i.e. they start and end at the same point, and therefore the whole configuration is 
topologically equivalent to the uniform state. Before we continue the discussion of 
the defects we have to consider a correct way of finding m. 
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(c) (dl (el 

Fig. 4. Zero-strength defect m = 0 with 6 (a) and 8 dark brushes (b) that form loops; (c), (d), (e) 
the continuous transformation of the defect stmcturq into the unifrom one in the vicinity of the 
defect core. 

5.2.3. Calculation of the defect strength 

The relation between (mi and N can be found using a circle S' of unit radius that 
represents s ~ c a l l e d  degeneracy space for the in-plane vector field n,,.20779 Let us 
consider an example with a m = 0 defect, Fig. 5. 

Each point of S1 represents one particular orientation of n,,. The function 
n,,(x, y) maps the points (x, y) of the real space into S'. When one moves around 
the defect core along a closed loop a P x b (Fig. 5a), n,, (x, y) draws a corresponding 
loop 7 on S1 (Fig. 5b). If the state is uniform, then 7 is a point at S1. If the state is 
nonuniform, but can be transformed into the uniform one (as shown in Fig. 4), then 
the loop can shrink into the point on S1. If n,,(x,y) has radial-like distribution 
with m = 1 (Figs. 2b and 2c), then 7 coincides with S1 since one meets all possible 
orientations of n,, just once. For symmetrical defects n, -- cosmcp , n, -- sin mcp, 
each orientation of n,, is realized exactly Iml times; Im( is an obvious topological 
invariant (strength) of the defect with sign defined by the orientation of y.20 In 
contrast, for non-symmetrical defects different n,, orientations are realized a various 
number of times. For example, for the m = 0 defect some orientations of n,, do 
not occur at all (those close to 2 o'clock), while all others appear twice (Fig. 5b). 

Now, let us imagine that the structure is viewed through the microscope with 
polarizers, e.g. along the East-West (P, polarizer) and North-South (A, analyzer) 
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Fig. 5. Determination of the defect strength using the circle of the possible director orientations 
S1: director distribution in the film plane (a,d); contour -y on the circle S1 shows the orientation 
of the director around the defect (b, e); schematic textures of defects ( a , d )  viewing between the 
crossed polarizers of a microscope with 8 (c) and 6 (f) dark brushes; number of the brushes depends 
on the orientation of the defect structure with respect to the polarizers. 

directions (Figs. 5b and c). The dark brush of extinction appears when n,, is 
oriented along P or A; N is the number of times y crosses lines A and P. Therefore, 
for the defect shown in Fig. 5a, N = 8 despite the fact that m = 0. It is important to 
note that N may be changed simply by sample rotation as shown in Figs. 5d, e and 
f: slight rotation of the structure between the crossed polarizers results in N = 6. 
As it is easy to see, any integer N (even such exotic as N = 1, 3, 5, 7, etc.) can 
correspond to  the real defect configurations (including m = 0) in the hybgid aligned 
nematic LLC film. Therefore, Eq. (15) should not be used in the general case, and 
the strength of defects should be defined directly from the structure reconstructed 
by optical methods.36 
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5.2.4. The elastic energy 

The nonsymmetrical structure of defects and the presence of the large sector I with 
radial structure play a crucial role not only in the textural peculiarities but also in 
the saving of the elastic energy.36139 To show this, it is sufficient to  calculate the 
elastic energy Fl of the defect with radial structure in the whole azimuthal plane 
(m = 1) and then compare this energy to  the energy Fo of the homogeneous state 
of the HAND film (Fig. 2). - 

In cylindrical coordinates (r,cp, t.) the m = 1 defect distribution (Figs. 2b and 
e) is 

nr = sin(& - at.), n, = 0 ,  n, = - cos(O1 - at.). (17) 

Substitution of (17) into Eqs. (1) and (2) and integration over the range T, 5 T 5 R, 
0 5 cp < 27r, 0 5 t. 5 h yield 

where A = 1 - sin(O1 - 02) cos(81 + 02)/(81 - 02) , T, is the radius of the defect core 
with energy Fc - WIT: +KT,, and Wl is the anchoring coefficient a t  the boundary 
with tangential orientation. The superscript "-" indicates that the defect under 
consideration has negative saddle-splay curvatdre (Figs. 2b and e). 

On the other hand, the energy of the homogeneous HAND state is 

The comparison of (18) and (19) shows that the defect state may be energetically 
preferable than the uniform state owing to  the (i) splay canceling mechanism and 
(ii) saddle-splay mechanism that are represented by the two terms in Eq. (18), 
i.e. (-2aAR) and (4aARK24/K), respectively. 

Splay canceling. The term (-2aAR) is obviously negative since both A and 
a are positive. With K24 = OK = 10-llN , d  - T, - 10 pm,  and Wl = 
J/m2, one obtains Fl < Fo if R/d > 1, i.e. the defect state is preferable than the 
uniform distribution of n,,. This result is a consequence of the principle of splay 
c a n ~ e l i n g ~ ~ * ~ ~ :  if the boundary conditions force a variation of n in one direction, 
then a variation of n in another direction can lead to  cancellation of the splay 
contribution. Splay canceling may be illustrated by rewriting (V . n)2 as a function 
of the principal radii of curvature R1 and R2, (Eq. (13)). The elastic energy reduces 
when RlR2 < 0. For the uniform HAND film, R,' - a ,  R,' = 0, while for the 
defect state shown in Fig. 2b, R,' - a ,  - r-' # 0, and R1R2 < 0. 

Saddle-splay mech~nism.~' The sign of the saddle-splay contribution might be 
either negative or positive as defined by the sign of the elastic constant K24 and 
the geometry of curvature. In the case of Figs. 2b and el the defect energy will be 
decreased for K24 < 0. However, one may consider the opposite situation when the 
m = 1 defect has positive Gaussian curvature3' (Figs. 2c and f )  

nr = sin(& - at.), n, = 0 ,  n, = cos(O1 - at.). (20) 
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The saddlesplay contribution favors this defect if K24 > 0: 

there is no energy gain from the splay term. 
Saddlesplay deformations save the elastic energy not only for m = 1 structures, 

but also for Iml > 1 and m = 0 configurations since these configurations contain 
broad sector I with m = 1. After insertion of (16) with MI = 1 and MII = 
1 + 27r(m - I) /@ into Eqs. (1) and (2), one obtains the elastic energy of the non- 
symmetric defect of strength m which contains the radial-like sector 

where signs "f" indicate the type of the m = 1 sector. 
The equilibrium value of @ is obtained by minimizing F,f: , 

As a result, for sufficiently large R/h defects with m # 1 might be energetically 
more preferable than the state with uniform n,,. For example, for a m = 2-defect 
with a0 = 7r/2, even with KZ4 = 0, one obtains F2 < Fo when the saddlesplay 
curvature is negative and R/h > 6. 

5.3. Strings and linear internction between point defects 

There is an almost obvious structural similarity between topological defects in liquid 
crystals and elementary particles or defects in superfluids and ferromagnetics. Fur- 
thermore, liquid crystals offer the remarkable possibility of studying the dynamic 
aspects of singularities and the behavior of defects produced during a symmetry- 
breaking phase transition (see, e.g. Ref. 81). The particular boundary conditions of 
HAND films make it possible to  observe qualitatively different regimes of the defect 
dynamics and  interaction^.^^ 

The dynamics of point defects was studied in Ref. 33 for the HAND films with 
thickness ranging from 1 pm to  100 pm. The most interesting structural peculiarity 
of the films with thickness -(I-30) pm is that the nonuniform distribution of n 
between boojums of opposite topological charge is trectched out into a string with 
well-defined width D (D = 100-300pm, depending on the film thickness). Each 
string is seen in the polarized light as four parallel extinction brushes (Fig. 6). 
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Fig. 6. Strings connecting point defects-boojums in a HAND film (5CB on glycerin, crossed 
polarizers) (a) and one of the possible director distributions (b). 

The director n undergoes a 2?r rotation within the string. Outside the string n is 
uniform in the horizontal plane. However, if the thickness of the LLC film is larger 
than - 50pm, the strings do not occur, and the director field between the pair of 
boojums expands in the horizontal plane. 

As time elapses, the boojums close on each other and annihilate. As it has been 
found in Ref. 33, if the boojums are connected by a string the closing velocity v 
does not depend on the string length. Since the dynamics of the annihilation is 
defined by the elastic interaction of defects and by frictional forces, these data cast 
some light on the form of the interaction potential. 

The width of the string is constant. Therefore, the elastic energy of the string 
is proportional to  its length L. In other words, the interaction potential of the two 
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end point singularities depends linearly on L, 

where a is a constant, and K 7- K is a combination of the elastic constants. 
The dynamics of a string is a dissipative motion of boojums which experience 

a frictional force proportional to the closing velocity v. Under the assumption that 
the friction acts identically on both boojums, the equation of motion is 

where Ffrictio, = 7vD (the energy is dissipated in the region of width D),  and 7 is an 
effective orientational viscosity. Thus one finds that the boojums' closing velocity 
does not depend on L 

v = aK/yD = const., (26) 

in agreement with the experiment. The linear nature of L(t) manifests itself as a 
linear interaction between the defects, (Eq. (24)). The force of the interaction does 
not depend on the separation distance as in the case of quarks. 

The dynamics of defects is completely different when the string confinement is 
absent. Experimentally, the string does not occur when the hybrid aligned film 
is thick (h 2 50pm). The most probable reason is the two-dimensional character 
of the n field near the boundary with tangential orientation (where the boojums 
are located) for a thick sample. In the two-dimensional case, the interaction of the 
point singularities obeys the logarithmic law 

U = 2 ~ K h '  In (LID),  (27) 

where h' is an effective thickness of the layer in which the tangential orientation 
is preserved. Using the equation of motion (25) and the definition v = -dL/dt, 
one finds that the annihilation time is proportional to  the square of the distance 
between the defects, T 7- L2, or, in other words, 

where Lo is the separation distance at the moment t = 0. 
The very existence of the ST-strings in thin HAND films and their absence in 

thick films remains an unsolved, intriguing problem. The appearance of strings can 
be related to  the three-dimensional character of deformations in thin films (where 
n rapidly reorients from tangential to normal alignment along the veritcal axis). 
The string energy obviously contains the surface-like terms; this property can be to 
measure the corresponding constants. The string model with K24 # 0 and KIB = 0 
was considered in Ref. 39. 
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As was already indicated, n undergoes a rotation through 2~ within the string 
width D.  The deformation of n depends on all three Cartesian coordinates and thus 
the saddle-splay elastic contribution to  the string energy is nonzero. The important 
point is that there are two different T-turns within the width D that differ in sign 
of the saddle-splay contribution: one within width 1 and another within width L. 
Thus 1 + L = D ,  but as follows from the experiment, 1 # L (Fig. 6). Employing 
director distribution with different in-plane curvatures for the 1 and Lsubstrings, 
one can see that the saddle-splay term contributes with different signs to the line 
tensions Fl and FL of these two ~r-substr ings~~ 

Here, Fanch, L and Fanch, are the corresponding anchoring contributions. 
The line tensions Fl and FL of the two bands should be equal to  each other 

because the string as a whole tends to  be a straight line. Using this condition, an 
expression for the ratio K24/K can be obtained that depends on the width of the 
substrings, film thickness and the anchori~g energy.39 Therefore, the measurements 
of the parameters of the strings can be used to estimate K24/K. However, this 
method is restricted by the necessity of independent measurement of the polar 
anchoring strength. 

5. Ka4 Mechanism of Spontaneous Twist  Deformations a n d  
S t r ipe  Domains 

Stripe domains are the most regular and simplest patterns observed in the nematic 
LLC films of thickness h I 1 pm.35 The domain period L is a function of h. The 
dependence L(h) can be obtained both experimentally and theoretically, which 
makes the stripe domains promising for studying the divergence elasticity. Although 
the stripe phase is attributed to a geometry with essentially submicron thickness, 
it is detected on supramicron scales (Fig. 7). Subsequently, the dimensionless wave 
number x = 2 ~ h l l - s ~  1. Smallness of x enables one to  develop the detailed theory 
of the p h e n o m e n ~ n . ~ ~ * ~ ~  

The implies the presence of all types of director deformations, in- 
cluding twist. In the absence of twist the term 1/(R1R2) in (V . n)2 functionally 
coincides with the K24 term (see Eqs. (13) and (14)). If, however, there are twist 
deformations, the representation in terms of normal surfaces C and their curvatures 
is no longer possible. In this case, the Kz4-like contribution can be separated from 
fF by means of the general identity (6). 

For the homogeneous hybrid state (10) to be unstable with respect to the per- 
turbations 68 = +(y,z) and cp(y, z) periodic along the y-axis (Fig. 7), the leading 
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Fig. 7. Periodic stripe domains in thin nematic film (h x 0.4 pm, 5CBlglycerin) (a); schematic 
director structure in horizontal projection (b). 

part b2F of their energy, which is quadratic in $ and cp, must be negative. After 
rather routine calculations we have 

where the function B(z) is given by Eq. (10) while its boundary values B1 and B2 are 
the h-dependent solutions of system ( l l ) ,  (12) (note that in previous Secs. 5.1-5.3, 
B1 and B2 were assumed to be h-independent for the sake of simplicity). There 
are only three terms in Eq. (31) that are not positive definite and can therefore 
result in a negative value of b2F.  One of them is the surface term - W s / K  which 
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corresponds to the well-known transition from the uniform state to the distorted 
homogeneous state h = ha (see Eq. (9)). This term is shown to be no way related 
to the periodic perturbations.45 The second term is a bulk one of density f22 = 
-2(1 - t )  sin2 8q,$,. It is proportional to 1 - K22/K and therefore the smaller 
KZ2/K (typically, 0 < t 5 I), the greater the absolute value of this term. Lastly, 
the third term is a surface term f24 = 2(1 -  sin^ 0p,by)2 - (sin2 8q$,)l]. It  is 
proportional to 1-2KZ4/K, and its contribution grows with 11 - pJ.  It is natural 
to refer to  the stability loss mechanisms, associated with the negativity of the f22 

and f24 terms as to the Kzz and K24 mechanisms, respectively. Both mechanisms 
. are associated with the spontaneous violation of the chiral symmetry of n. In the 

homogeneous state both fZz and f24 vanish; their finiteness after the transition 
implies the existence of twist deformations. 

The Kzz mechanism of spontaneous twist deformations in nematic phase is well- 
known. Usually, KZ2 is smaller than KII and Ks3. If splay and bend deformations 
are sufficiently strong, their partial weakening by twist deformations is energetically 
profitable. The Kzz mechanism is responsible for the formation of stripe domains 
in the Frddericksz transition when K22 is sufficiently small ( t  5 0.33).'~ However, 
the situation is different in our case: stripe domains are observed in nematic liquid 
crystals with t .V 0.6 and even with t N 0 . 7 . ~ ~  The matter is that fZ2 - X6 whereas 
f24 N x4, and hence for the long-wavelength stripe domains with x << 1 the KZ2 
mechanism is merely not effective in comparison with KZ4 m e c h a n i ~ m . ~ ~ ' ~ ~  Thus, 
striped domains with x << 1 observed in Ref. 35 are driven by the K24 term. Partic- 
ular cases of the appearance of the stripe domain phase were considered numerically 
in Refs. 38, 41, 43 and 46. 

The most informative dependence describing the stripe domains in the nematic 
HAND films is the dependence ~ ( h )  obtained in Ref. 45. We shall give more details 
about this in Sec. 9.7 after consideration of the KI3 problem. 

Note that the consideration given above does not take into account the possibility 
of smectic-like ordering near the interfaces, which is important for homeotropic 
alignment (Sec. 8). This approach is justified by the fact that the nematic films 
(0.1-1 pm) are still much thicker than the possible smectic-like ordered regions 
(< 0.01 pm), and the orientation of molecules in the submicron region is almost 
tangential across the entire film thickness. 

In contrast to the K22 mechanism, the K24 mechanism of chiral symmetry break- 
ing is irrespective of the bulk constant anisotropy. Therefore, this mechanism might 
be important for other condensed media, such as superfluid 3He and ferromagnetic 
phases. 

6. Geometrical Anchoring 

If a liquid crystal is in contact with an isotropic medium, the surface free energy 
depends only on the polar angle 8 at the surface and is azimuthally independent. 
However, this statement is valid only in the particular case when the two surfaces of 
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the film are pamllel and fiat. In the general case of a nontrivial bounding surfaces, 
surface tilt leads to a well-defined azimuthal orientation which corresponds to  the 
minimum of the free elastic energy.42 

Let us consider a flat nematic film with degenerate tangential orientation on the 
upper surface and degenerate tilted orientation on the lower (Fig. 8a) 

8(z = 0) = 81 = const., 0 5 5 n/2 .  (32) 

Let us assume that the upper surface with tangential anchoring is inclined 
around the Y-axis (Fig. 8b). Now, 8(z = h) depends on the inclination angle 7 
and on the azimuthal parameter 90 ,  which is the angle between n and the fixed 
axis X' in the inclined plane 

8(a = h) = arccos(sin 7 cos 90) . (33) 

The free-energy density in the absence of twist deformations 

leads the bulk equation I 

8,, = 0 .  

The solution satisfying boundary conditions (32) and (33), 

8(z) = el + [arccos(sin 7 cos 90)  - 81]z/h, (36) 

gives a 90-dependent free energy per unit area (Fig. 8d), 

K K = - + - { [arcsin(sin 7 cos qo)]2 - 2~8arcsin(sin cos 90))  . (37) 
2h 2h 

Here, A8 = ?r/2-O1 is the difference in the polar anchoring at the two surfaces. The .. 

second term of Eq. (37) can be considered as the geometrical anchoring function 
W,,, with well-defined angular dependence. 

The minimization of F with respect to 90 shows that the surface tilt imposes a 
preferred azimuthal orientation. If 0 < 7 5 ~ 8 ,  the easy axis is aligned along the 
thickness gradient, qo., = 0 (Fig. 8b and d). With 7 =const. the increase of A8 
leads to  a sharper minimum in F(cpo). In the opposite case, 7 > A8, one obtains 
nonzero solutions (Figs. 8c and d) 

9 0 , ~ ~  = f arccos(sin A81 sin 7)  . (38) 
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Fig. 8. The geometrical anchoring in a nematic film with non flat profile. a: Flat film with 
generally different polar anchoring. b, c: The surface tilt leads to the preferable orientation of n 
along  PO,,^ = 0 ,  if 0 < 7 5 A8 (b), and along nonzero (poBeq, if 7 >  ti (c). d: The elastic energy - of the film as a function of the azimuthal parameter PO. The upper surface is tilted by 7 = 15' 
with respect to the lower one. Different values of A8 are indicated in degrees units. 

Any deviation from these "geometrical" easy axes will increase the free energy 
(Fig. 8d). This result is clear to understand. For example, if the lower plate sets 
the tangential orientation, 81 = 82 = 7r/2 and A0 = 0, then n is absolutely uniform 
only for cpo., = f a/2, and any other cpo would imply distortion. 

One should distinguish the geometrical anchoring considered in Fkf. 42 from 
de Gennes' coupling between the shape of the nematic-isotropic interface and the 
elastic distortions of the nematic b ~ l k . ' ~ ? ~ ~  In accordance with Fkfs. 15, 52 the 
elastic energy of the nonuniform nematic can be reduced by the interface tilt if 
the interfacial tension and the density difference of the two media are sufficiently 
small. On the contrary, the geometrical anchoring does not imply the balance 
considered; the bulk distortions can be negligibly small and the interfacial tension 



2412 0. D. Lavrentovich & V .  M .  Pergamenshchik 

can be infinitely large. All that is needed is just the geometrical tilt of the surface, 
which can be induced by any factor including the interface tension. 

The geometrical-anchoring approach can be applied to different geometries and 
media. Especially interesting consequences are expected for static configurations 
and dynamics of wetting LLC films. The spreading film typically has macroscopi- 
cally thick and microscopically thin parts. There is an intermediate region where 
the film thickness rapidly varies and the surface tilt 7 reaches some maximum value 
rmax (e.g., see Ref. 83). The anchoring parameter A$ also changes along the film - 

because of the finite polar anchoring. In other words, 7 / ~ $  and the aziumthal ori- 
entations of n,, vary along the normal to the film edge in accordance with Eqs. (37 - 
and 38). These reorientations of n,, give rise to  domain walls that have been ob- 
served experimentally for non-flat nematic films placed on a glycerin surface.42 Note 
that JBr6me and Boixe4 have observed periodic walls in the n,, field that nematic 
films form on rigid substrates in the regime of oscillating surface tilt. 

Another consequence of the geometrical anchoring is the optical activity in chem- 
ically non-chiral liquid crystal films or droplets when the sample is not flat and one 
of the surfaces sets physical azimuthal anchoring.42 Let us imagine a tangentially 
achored nematic layer placed on a rubbed solid substrate. The rubbing sets uni- 
directional orientation cp(z = 0) = 0. The upper surface is free and also provides 
tangential anchoring which is, however, physitally degenerate. If this surface is 
inclined, the geometrical anchoring tends to set cp(z = h) = f n/2. The balance 
between the physical and geometrical anchoring results in twist deformations that 
provide smooth reorientation of n from cp(z = 0) -+ 0 at the lower rubbed plate to  
cp(z = h) -, f n/2 at the upper surface. Experimental data85-87 indicate optical 
activity of the nematic droplets placed onto a rubbed or polished rigid plate. The 
discussed twist provides quite a natural explanation of this distracted phenomenon 
since the droplets have nonflat shape.42 

7. Flexoelectricity 

The flexoelectric effect in a nematic liquid crystal consists in the appearance of a --. 

macroscopic polarization P in regions with a nonuniform n151ee 

el and e3 are the flexoelectric coeffiecients. Typically, the polarization is screened 
by ions. However, when the characterisitic size of the distorted region is sufficiently 
small as compared to the Debye screening length (e.g., in the case of small dispersed 
droplets), the screening is not so effective and consequences of the flexoelectric 
effect can be observed experimentally. One example is the possibility of ordering in 
systems of liquid crystal d r o p l e t ~ . ~ ~ - ~ l  

In the regime of incomplete wetting, a LLC film forms a convex lens-shaped 
droplet at the isotropic substrate. Each droplet contains a point defect because of 
the boundary conditions. .Usually, the defect is located in the center of the droplet,30 
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Fig. 9. Orientational ordering of the symmetry axes of lens-shaped nematic droplets (5CB) placed 
onto the polyisobuthylene substrate. Crossed polarizers. The scheme shows the director structure 
inside the droplet. 

but in some systems it is shifted towards the periphery (Fig. 9). The broken symme- 
try gives rise to the dipole flexoelectric polarization along the horizontal axis. The 
interaction between the flexodipoles can lead to orientational ordering of droplets 
(as shown in Fig. 9). 

Let us assume that a droplet has a cylindrical shape with a radius R and a 
height h < R. The boundary conditions are normal at the lateral surface and 
tangential at the upper and lower surfaces. The distribution close to that observed 
experimentally (Fig. 9) can be written in Cartesian coordinates as 

where 1) is the angle between the radius vector r and the symmetry x-axis. The 
director distribution has a singularity at the origin of the coordinate frame which 
is placed on the edge of the droplet. 

Using expressions (39) and (40) one finds the dipole moment of the droplet, 
p = Sv PdV, which is directed along the symmetry axis x 

To estimate the effectiveness of the dipole-dipole interaction of the droplets, we 
set el = -es and introduce the dimensionless constant A = p2/a3kBT, where a 
is the distance between droplets, T is the temperature, and kB is the Boltzmann 



2414 0. D. Lavrentovich €4 V. M .  Pergamenshchik 

constant. The ordered phase of dipoles forms when X 2 6og2 which corresponds to 
a distance - 20-30 pm between droplets. 

It is pertinent to  compare the interaction energy involved in the flexoelectric 
effect (e.g., the dipole-dipole energy Up, = p2/a3) with the energy of the dispersive 
interaction of  droplet^^^^^^ Udd - HR/12a, where H - 10-l9 J is the Hamaker 
constant. For the parameters estimated above, Upp/Udd < 1 if a 5 700pm. In 
other words, within the scales over which one would expect a coherent behavior of 
the droplets, the flexoelectric interaction can be predominant (if it is not screened 
by ions). It would be interesting to  study this point in more detail experimentally. 

8. Smectic Films 

Smectic ordering can occur in LLC films even when the temperature of the sam- 
ple is well above the smectic-nematic transition because the interfaces restrict the 
translation degree of freedom of the molecules. There are numeorous examples of 
the smectic A ordering at the free surface of the nematic and isotropic phases for 
normal boundary  condition^.^^^^^ Thin (less than 5 nm) translationally ordered re- 
gions occur even for tangential a n ~ h o r i n g . ~ ~  Below, we briefly discuss the LLC films 
composed entirely of a SmA phase. As in the case of nematic LLCs, the SmA film 
structure is strongly connected to  the balpce of surface and bulk forces. 

The peculiarity of the elastic theory of SmA phase is that the twist and bend 
deformations are prohibited because these deformations violate constant interlayer 
separations. The normals n to  the layers are everywhere straight lines andQ6 

It is easy to  see from Eqs. (42) and Eqs. (1)-(5) that not only the twist and bend 
terms do not enter the expression for the SmA elastic energy, but also the K13 and 
K24 terms cannot be separated from each other. Thus, one usually writes 

where R1 and R2 are the principal radii of curvature of the smectic layers, K is the 
saddle-splay elastic constant, and B is a compression modules that describes the - 

elastic resistance to  variations E of the layer thickness d. Splay and compression 
elastic constants are related, B = KX2, where X is a characteristic length (A - d - 
30 A far from the thermotropic SmA-nematic phase transition). 

The saddle-splay modules K has physical meaning similar to  that of constant 
K24 in the nematic phase (note that the conventional signs of these two constants 
are opposite to  each other, compare Eqs. ( I) ,  (14) and (43)). The vlaue of K for 
thermotropic SmA phase is unknown. There are few estimations of K for lyotropic 
SmA  phase^.^^*^^ It turns out that for lyotropic SmA phase IK( can be even larger 
than K ;  besides, K adopts both positive and negative values depending upon the 
surfactant-tecosurfactant concentration ratio.70 
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The energy densities carried by the system for pure curvature deformations 
(- K / R 2  or K / R 2 )  or for a pure compression (- B) have very different magnitudes 
at large scales R  >> A, which tells us that the SmA phase usually deforms in a set 
of equidistant and parallel surfaces without dilations. 

Fig. 10. The Appolonius packing of focal conic domains in smectic A film (80CB/glycerin) (a); 
geometry of layers in the vertical cross section of the torical focal conic domain (b). 

Let us suppose that the hybrid aligned nematic LLC is cooled to the SmA 
- phase. The necessity to  simultaneously satisfy hybrid boundary conditions and to 

maintain the layers' equidistance leads to the appearance of secalled focal conic 
defects (Fig. 10). Basic features of these objects are described in Refs. 15, 16 and 
20. For a SmA LLC film one deals with the simplest case of torical domains (more 
complicated geometries might occur in a cell with rigid treated plates in the vicinity 
of the SmA-nematic transitiong7). The layers are folded around the circle which 
bounds the domain base and a straight line passing through the center of the circle 
(Fig. lob). The region of deformations is restricted by the circular cylinder. It is 
remarkable that within the domain base the molecules are strictly tangential to the 
interface. Outside the domain, the molecules are normally anchored (Fig. 10). The 
evident reason for the domain appearance is the tendency of the substrate to orient 
molecules tangentially. 

How do the torical focal conic domains with circular bases fill the LLC film? The 
most obvious solution is the Appolonius packing of circles on the plane.16~96~98 One 
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begins with placing the largest possible domain with radius of the base N h. Then 
the remaining gaps are filled with smaller conical domains, etc. (Fig. l la ) .  The 
question is: what is the radius a* of the smallest domain? If the filling is defined 
only by the bulk properties of the SmA phase, the smallest radius is of molecular 
size, a* N A N 47p.9B However, in reality the iterations are often interrupted a t  
scales much larger than the moclecular size (a' >> A).99 The reason is the anisotropy 
of the surface energy of the SmA phase.99 

For a qualitative understanding it is sufficient to  point out that there are two 
- 

types of anchoring a t  the lower boundary (Fig. lob): the normal one between the 
domains and the tangential one within the islands of domain bases. The surface - . 

energies u l  and 011 for these two alignments are different. If Au = ull - u l  < 0, then 
the appearance of a small domain with radius a in between larger domains saves 
surface energy N (-Au)a2, and the elastic energy cost is K a  (when = 0). The 
balance of the surface and curvature terms results ingg 

which can be very different from A. For example, with K lo-" N and Au -- 
J/m2 one obtains a* N 1 pm.  On scales exceeding a*, the space filling is 

realized by the Appolonius packing of domains; these domains provide the proper 
r 

tangential surace alignment. On scales smaller than a*, the remaining gaps cannot 
be filled with domains because the losses in elastic energy are larger than the surface 
energy gain. The described hierarchy is rather general for smectic texturesQ9; for 
instance, it also governs the structure of secalled "btitonnets" of the SmA phase 
emerging from the isotrpoic melt.loO Critical radius (44) can be changed if K # 0 
(the energy of the focal conic domain contains linear combination of K and K 
terms69). 

In the SmA phase the surface parameter Au should not be mixed up with the an- 
choring coefficient W that describes the energetic cost of relatively small deviations 
from the equilibrium tangential or normal orientations. Only tangential and normal . 
orientations at the surface are compatible with the SmA layered structure. Indeed, 
the tilt of layers at the boundary of an isotropic fluid implies either (1) the breaking 
of layers and preserving of surface flatness (if u >> Bd, Fig. l l a )  or (2) rippling of - -  

the surface but preserving of the layer structure (if u << Bd, Fig. l lb) .  The rippled 
interface can be described by a potential u(8) = 011 sin 8 + u~ cos 8(0 5 8 5 n/2). 

In the first case, W might be as high as l0-~-10-~  J/m2,10' which is significantly 
higher than W usually measured for nematic liquid crystals. In the second case, 
the interface area increases by the factor (cos8 + sin 8)-I > 1; consequently, W 
u(cos8 + sinO)-l is comparable with u. Usually u >> 1AuI. For example, a t  the 
SmA-glycerin interface u - J/m2,53 while IAuJ - J/m2.gg Therefore, 
one can expect that W >> JAuJ  in both cases considered (note, that in the nematic 
phase W -- JAuJ). Large W can influence the focal conic domain patterns, since the 
SmA layers should be tilted at the surface containing the apex of the domain.lol 
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Fig. 11.  SmA surface: the tilted orientation requires layer breaking (a) or interface rippling (b). 

9. Inclusion of the K I S  Term in the Standard Elasticity Theory 

In the standard variational analysis, the surface contributions to functionals contain 
no derivative-dependent terms. An extremal family of functions for the standard 
functional satisfies the Euler-Lagrange equations. The problem is that the surface 
density of the K13 term is derivative-dependent and a minimizing procedure for 
the functional F2 with Kl3 # 0, Eq. (I), is not known. In this respect, Oldano 
and ~ a r b e r o " ~  have made an important point that the K13 term leads to infinitely 
strong subsurface deformations; these deformations are a consequence of the fact 
that the K13 term is unbounded from b e l o ~ . ~ ~ g ~ ~ ~  The paradox is that this re- 
sult follows from the continuum theory where the deformations should be weak. 
Therefore, an interpretation of the K13 term must involve the resolution of the 
Oldan*Barbero paradox. 

Rather than face this problem, Hinovlo4-lo7 has postulated a pfiofi  that physical 
content should only be assigned to  the Euler-Lagrange equations for the functional 
F2. These equations, nevertheless, do not yield a minimum energy configuration. 

On a different note, Barbero, Madhusudana and old an^^^ have argued that 
to restrict the infinite deformations some fourth-order terms should be retained in 
the free-energy expansion. However, the predicted finite deformations are still very 
strong to  be accommodated in a continuum theory where smooth variations over 
mesoscopic length scales are assumed.15156-59 Moreover, the question arises as to 
which fourth-order terms should be retained. 

Derivative-dependent terms are also introduced in the expressions of the anchor- 
ing energy. Some surface energy densities quoted in the literature are 

1 
fRP = - WRP sin2(e - 8) , 

2 (45) 
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referred to as R a p i n i - P ~ ~ o u l a r , ' ~ ~  Dubois-Violette and Par0di,8~ and Madaloe 
terms, respectively; here 6 - 6 is the angle between n and the easy axis e on S, and 
the prime denotes the derivative of 8 along the normal k to S. 

Another problem concerns the separation of the "surfacelike" elastic terms 
(which are just divergence bulk terms and depend exclusively on the properties 
of the nematic material) and the anchoring energy (which depends on the prop- 
erties of both the surface and the nematic phase). Indeed, the anchoring term 
(46) has a structure similar (at least in the one-dimensional case) to fls, Eq. (5). 
Formally this implies that the only observable quantity would be the sum elastic 
constant+relevant anchoring coefficient and the measured surfacelike elastic con- 
stants would be meaningful only in association with a pair nematic-surface. The 
question then arises as to whether a microscopic calculation, even formally unam- 
biguous, would be of any use at all. However, even this microscopic unambiguity 
has been questioned.1 

Thus, a consistent theory of the divergence elasticity must be able to answer the 
following questions73 : 

I. Is i t  possible to introduce the K13 term in the nematic free energy without any 
contradiction with the very idea of weak deformations? 

11. Why, despite similarity between the K13 and K24 terms, only the K13 term 
causes dificulties, while the K24 term does not? 

111. What is the role of the derivative-dependent terms in  the anchoring energy? 
IV. Is it possible to assign well-defined K13 and K24 values to a given nematic 

material? 
V. Are the constants K13 and K24 unambiguou~ quantities from the microscopic 

point of v i e d e  ? 

First of all we shall formulate the mathematical essence of the problem. 

9.1. Unboundedneee of the Fnmlc-Oseen fvnctional form 
below for Kls  # 0 

Let us consider a nematic sample limited by two surfaces, z = 0 and t = h (Fig. 1). 
In the one-dimensional case 6 = 6(z), the free energy of the sample, is 

Standard procedure for finding 8(t)  implies solving the Euler-Lagrange equation 
6" = 0 with solution 6(z) = -crz + el .  For this B(t), functional (48) takes some 
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finite value which would have been its minimum in the standard situation. However, 
this value is not a minimum if K13 # 0. Indeed, let us choose O(z) = baa + O1 in 
the vicinity of the surface a = 0; here, 1/2< a < 1 and b is an arbitrary constant 
such that bK13 > 0. For this O(z), the K13 contribution becomes infinite negative 

-Kl3e; sin 281 N - ~ ~ ~ a b z ~ - l s i n  201 - -oo , z = 0 .  

At the same time the bulk energy converges a t  z = 0, 

so that F2 -+ -oo. Therefore, the functional possesses no minimum a t  all unless 
K13 is strictly zero. The larger b the larger the drop in the free enrgy. On the other 
hand, n rotates through the angle A9 N 1 within the subsurface layer of thickness 
Az - b-". Since b can be arbitrary large and hence Az can be arbitrary small, such 
director deformation is merely a subsurface discontinuity. This fact has given rise to  
the idea that the nonzero K13 causes infinitely strong subsurface deforrnat i~ns. '~~ 
Such a discontinuity is rather surprising result in the macroscopic theory because 
this theory presupposes that large deformation A0 N 1 occurs over distances much 
larger than the microscpic legth LM. The discontinuity formally occurs not only in 
the flat geometry considered here but in arbitrarily shaped nematic samples.73 

9.2.  Restriction of deformations and higher-order elasticity 

From the mathematical point of view, the unboundedeness of F2 from below means 
that F2 has no minimum. From the physical point of view, strong deformations con- 
tradict both the idea of the nematic phase and the assumption about the weakness 
of deformations underlying the derivation of the functional F2. The mathematical 
inconsistency can be removed by adding to  F2 some terms Rh of order higher than 
that of F2 in the operator a. The Rh terms bound the free energy from below, and 

- hence ensure the existence of min(F2 + Rh). For example, the authors of Ref. 65 
propose the form R4 = J P4(a2n)2dV, where P4 is some fourth-order elastic con- 
stant. Evidently, both the total free energy F = F2+R4 and the director derivatives 

- are now bounded. But to  make the theory physically consistent is more difficult. 
Although the deformations become finite in this approach, their values are still too 
high, L ~ a n  - 1 on S, while in the nematic phase LMan must be of the order 
LM/L << 1, where LM is a molecular length and L is the scale of deformations. It 
is clear that in the theory with L ~ a n  N 1 the scales LM and L coincide; this makes 
a macroscopic description impossible. 

A further question arises as to  whether one or several terms of fourth order must 
be introduced in R4. Such an ambiguity could be removed by taking into account all 
possible terms of the fourth order in R4. Although there are 35 such terms59 with 
unknown elastic constants, even inclusion of them all does not solve the problem. 
Indeed, the total contribution of any order contains additional divergence terms, 
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which also are unbounded from below. For example, at order a*  there is a term 
V (nA(V - n)), which introdues the third-order derivatives in the surface part of 
the free energy. Just as the K13 term is unbounded from below, this term removes 
the lower bound of the sum F2 + R4, which again has no minimum. Then, in order 
to  restrict the V (nA (V n))  term, one must take into account sixth-order terms, 
among which, however, the term V . (nAA(V n))  exists, and so on. We see that it 
is impossible to  solve the problem by introducing new elastic terms up to  any finite 
orders.73 

Moreover, let us for a moment assume that only the K13 term V . [n(A)OV - 
n] survives, while an infinite number of similar terms V . [ ~ ( A ) ~ v  . n] somehow - 

disappear from the total energy expansion F for all k > 0. Then the restriction to 
- 

the fourth order, i.e. F x F2 + F4, is meaningless itself. Indeed, F 2 k  - (LMa)2k,15 
and since the theory65 predicts ( L M ~ )  - 1, all F 2 k  are of the same order as F2. 
Therefore, we again arrive at  the necessity of considering the infinite series. 

Thus, the K13 problem follows from two contradictory assertions: 

(1) F2 is unbounded from below for any K13 # 0; 
(2) microscopic theories predict K13 # 0.64-66 We shall show that there exists 

a unique solution of the problem within the framework of a consistent phe- 
nomenological approach.73 , 

Such an approach must necessarily be consistent with the following ideas of the 
nematic phase: 

(A) deformations are weak, L ~ l a n l  - LM/L << 1; 

(B) a satisfactory theory must employ only the functional F 2  quadratic in the op- 
erator L M ~  - LM/L. 

This means that although the higher-order terms F z k  for k = 2,3,.  . . in princi- 
ple can play an important mathematical role in the theory, they must not enter 
explicitly the observable quantities, i.e. IF21 >> (R,J where R, = CrZ2 Fzl. It 
is clear that (B) can be satisfied only due to  (A) since it follows from (A) that 
F2k - (LM/L)2k.59 For example, R in the form R4 = S P4(a2n)2dV85 contradicts 
both (A) (LMJan( - 1) and (B) (IF21 - IRI), and n essentially depends on P4. 

If a finite number of terms in R does not solve the problem, the only possibility 
which remains is that R in the form of the infinite sum R, satisfies the requirements 
(A) and (B). It  is clear that R, cannot be obtained explicitly. Nevertheless, there 
are in fact only two possibilities to satisfy (A) and (B): either K13 = 0, or R, 
behaves in the required fashion. Thus, again the situation seems to be rather 
paradoxical. Indeed, knowing no explicit expression for R, we have to realize that: 
(1) the sum F2 + R, allows only weak deformations; (2) JR,I << JF21, i.e. the 
series R, converges, though being restricted to  any finite order, it might diverge. 
However, this situation is common rather than any exotic, and the problem of 
derivativedependent terms in the anchoring energy will give us an exact example 
of an infinite sum with all the features required of R,. 
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9.3. Derivative-dependent t e n s  in the anchoring energy 

Each derivative in the bulk density is accompanied by the small parameter LMIL, 
while the anchoring energy contains no scale parameter explicitly. Indeed, &- 
dependent anchoring terms (46) and (47) were introduced only for the symmetry 
reason and no magnitude hierarchy in the derivative power occurs in the approach. 
In Ref. 73 such hierarchy was shown to exist. 

On a molecular scale there is an interaction between the nematic molecules and 
a surface field penetrating inward nematic to some small depth Ls. The idea of 
the surface field that underlies the introduction of the phenomenological anchoring 

- energy was articulated most explicitly by Sluckin and P o n i e w i e r ~ k i , ~ ~ ~  Sen and 
S~l l ivan ,"~  and O ~ i ~ o v . " ~  

The surface field directs the nematic molecules along a certain easy direction 
e, and thus can be considered as a vector ;Pe. Its magitude 11, decreases rapidly 
along the normal direction so that $:' ;P2tkdt 2 $; ;P2tkdt. Bulk density of the 
surface-nematic interactions can be written as 

If 8 is the angle between the normal k and e ,  then the quadratic term has the form 
(with the accuracy fo an n-independent constant) 

where W2 > 0. Now the total free energy is given by the sum F = F2 + FS,2, where 

(51) 

The elastic constant K13 is taken to be zero in this section. Under this condition, 
- the form of Eq. (50) ensures that f + ~  is bounded from below. The functional F = 
, F2 + FS,2 is minimized by solutions of Euler-Lagrange equations; these equations 

differ from the Euler-Largange equations of the functional F2 alone only in a thin 
subsurface layer of thickness L,. 

Equation (50) represents the surface-nematic interaction as a standard bulk 
effect. However, we would like to  treat the energy density (50) traditionally, i.e. as a 
purely surface term. Of course, the two representations must be equivalent, i.e. they 
must lead to the same families of extremals for F ,  which can in principle differ 
only in the layer of thickness of order Ls near S. One can pass to the "surface" 
representation in the following way. Expanding sin2 in (50) in a power series of t 
near S given by t = 0, sin2 [02 (9(t) -81 = sin2(& -8) +t 2 sin 2(e0 -8) +. . . , where 
90 = 8(z = 0), 3 = ( g ) ( z  = 0), we find the surface density of the interaction 
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f s , 2  = IW~(  2 (iw dzt2) sin2(oo - 0) + (iw dzzt2)  2 sin 2(Bo - 8) 

d26o + 2 (iw dzz2y2) [? (2) cos 2(oo - 8) + - sin 2(oo - 8) + . . . . 
dz2 1 1 

(52) ~ - -  

Since S;dzzv2 - LE SOood~$2 - L;+~ and $ - 1/L, Eq. (52) turns out to 
be the expansion in power series of the small paramter Ls/L. The first term in 
(52) coincides with the Rapini-Popoular term fRp (45) if the notation WRP = 
W2 S; d z t 2  is introduced. The second term in (52) reproduces fDvp used by 
Dubois-Violette and Parodi (46); it is Ls/L times smaller than fRP. In the next 
order of smallness - fRp(LS/L)2 - fDvp(Ls/L), the term (%12 cos 2(8o - 8) 
exists, similar to the Mada term (47). The term of the order of fRp(Ls/L)3 and 
higher are omitted in (52) but of course they can be easily calculated. The term 
W4(n - e)4qb4 in (49) can be written in the similar form, too. 

Formula (52) gives the "surface" representation of the surface-nematic interac- 
tion. Of course, Eq. (52) can be thought of as a valid simplification of Eq (48) only if 
Ls/L << 1. Then each term of the series (52) has the form c o n s t . ~ ( L ~ n ) ~ = ~ ( L ~ / ~ ) ~ ,  
where const.- 1, ILanJ - 1 by the L-scale definition, and each surface derivative 
in the anchoring energy is accompanied by a small factor Ls/L, just as each bulk 
derivative is accompanied by LM/L. Thus, we obtain a hierarchy of the contri- 
butions of derivative-dependent terms in the anchoring energy which now can be 
classified by order of magnitude. 

Since each power of a introduces a small factor in the anchoring energy, the 
minimization problem for the functional F = F 2  + Fs,2 can be solved in the form 
of a power series of this factor by means of perturbation theory. In the lowest- 
order approximation, the only term contributing to  the anchoring energy is the 
Rapini-Popoular term FRp = S d S  fRp . In this approximation, the extremal family - 

of F = F2 + FRp is the solution of the Euler-Lagrange equations for the functional - 
F2 which corresponds to  the standard weak deformations. The next terms of the . 

series (52) give small corrections of the order of ( L s I L ) ~ ,  ( L s / L ) ~ ,  and so on, and 
play no practical role as compared with the first approximation. 

Let us consider how the surface representation can be treated to minimize the 
free energy of the nematic sample. The right hand side of formula (52) is the 
expansion of fs,2. Since f+,2 in Eq. (50) is bounded from below, f s ~  = S dz f+,2 
is bounded too. The results of minimization of the function fsV2 itself and its 
representation as an infinite series must lead to the same weak deformations. Let 
us, however, truncate this series restricting it to finite power k of a ,  and try to  

(id minimize such fs,2. Then the same difficulties appear as appeared in the problem 
of the K13 term. Indeed, for any k the surface density of the free energy contains the 
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derivatives of 6 th order. This fact leads to  unboundedness off:? from below. This 
shows that it is impossible t o  formally restrict the sum R, to any finite number 
of terms but that it is nevertheless possible that the infinite sum is bounded from 
below and its minimization results in weak deformations. 

What is very important here is that to  find n with accuracy ( L s I L ) ~ ,  it is not 
necessary to  know all the higher terms of the series (52). To demonstrate it further, 
let us consider an example which is extremely close to  the K13 problem. To this 
end we restrict the expansion (52) to 6 = 1 

-. (1) - 1 1 
fsp2 - Z W ~ p  sin2(e0 - 8) + -WDVp@, sin 2(00 - 8) 

2 

Formally, (53) results in l8hl - oo on S. However, we know that the sum of 
all the higher-order terms of the series (52) bounds the free energy from below so 
that 8' is small. Then, since 8 h W ~ v p  - ( L s I L ) ~  << WRp - Ls/L, the free energy, 
corresponding to  (53), contains in the first approximation just the first term, and 
its minimum can be found by solving the Euler-Lagrange equation of the functional 
F2. The role of all higher terms is reduced to  the restrictions of the functions, upon 
which min[F2 + I.,: dS] is sought, to  the family of solutions of the Euler-Lagrange 
equation for the functional F2. The second terms in (53) can be taken into account 
as a perturbation. 

9.4. Procedure of finding of the director for KI3 # 0 

As we saw, the sum F might possess a minimum whereas its first term F2 has 
no minimum. Therefore we must not resort to any features of F2, and all the 
assumptions that we can make have to be only about the infinite sum F. Let us 
show that if deformations are weak, i.e. LMlanl << 1, we can find an approximate 
equation for them. Indeed, the total free energy expansion has the form F = 
F2 + F4 + F6 + . . . . If F is bounded from below, its extremal family satisfies the 
Euler-Lagrange equation D2 + D4 + D6 + . . . = 0, where D2k - (a)2k corresponds 
to F 2 k .  Inasmuch as LM8 << 1, to the order - ( L M ~ ) ~  this equation is merely 
D2 = 0. This is just the Euler-Lagrange equation of the functional F2 alone73 

. which is similar to  the result of the previous section (we remind the reader that 
Euler-Lagrange equations can be formally written for any functional even if it has 
no minimum; in our case these equations do not minimize F2 but appear - one can 
say accidentally - as certain approximation to the exact minimization procedure). 
Higher order terms must be considered only in the framework of the perturbation 
theory. 

Let a general solution of the equation D2 = 0 be n = n(x,C) where C denotes 
all the arbitrary parameters. To finally find the director distribution, i.e. to find 
the values of C ,  one has to  introduce n(x,C) in the functional F ,  F{n(x,C)) = 
P(C)  and then to minimize the function P (C)  with respect to C. In the lowest 
order in small LMa, P (C)  = P2(C) = Fz{n(x,C)). We see that if deformations 
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are weak, the information on terms of order higher than 2 enters neither n(x,C) 
nor C,73 which is just what we required of our theory. The crucial point is that 
the considemtion given above only assumes the existence of minimum of F and i s  
irrespective of the existence or nonexistnce of minimum of F2. 

Let us consider the one-dimensional case for the simplest example (Fig. 1): 
n = (sin 0, cos B), 0 = 0(z). It  corresponds to the sample with two parallel surfaces 
Sl(z = zl) and S2(z = z2 > zl). The solution of the Euler-Lagrange equation is 
0 = 0(z, C1, C2), its derivative d0/dz = 0'(z, C1, C2). Two arbitrary constants C1 - 

and C2 can be expressed in terms of the boundary angles 01 and 02. Introducing - 
functions 0 and 0' in the free energy, 

1 
F2 = l: fFdz + -Kl3[8; sin 2(01 - 4) - 0; sin 2(82 - g2)] + fr(82) + fr(01) (54) 

2 

(fF is given by Eq. (2) and fA is the anchoring energy), we minimize the obtained 
function of 81 and 02 with respect to these angles. Employing notations Al = A(z = 
zl) and A2 = A(% = z2) for any function A(z), we find two equations with respect 
to the two constants 81 and 0273 

The last term in each equation comes from the fact that d8;/d02 and d0;/dOl do not 
vanish (while d81/d02 = d02/dOl = 0) .  These last terms, which have been always 
missing in previous versions of boundary  condition^,'^^-'^^^"^-^^^ couple variations 
of the angles on different boundaries due to the presence of the derivative in the 
surface part of the free energy. In particular, it is easy to see that if these terms 
are missing, the K13 contribution plays the role of an intrinsic deformation source - 

even for 01 = 02, and Eqs. (55) result in unphysical distortions under no external 
cause. A very large value of the constant K13 obtained in experiment115 has to be 
attributed to such the incorrect version of Eqs. (55) employed in this paper. 

9.5. Geometrical structure of the surfacelike terms 

Since the basic question I from Sec. 8 is answered positively, the question I1 becomes 
meaningful. The crucial difference between the K13 and Kz4 terms is their different 
geometrical s t r u ~ t u r e . ~ ~ ~ ~ ~  For arbitrary surface S of a nematic sample, the K24 
term (5) contains only derivatives alln in the directions tangential to S and does 
not contain derivatives a1n along the normal direction; the K13 term f13 (4) always 
contains the director derivatives aln normal to S. It is this normal derivative that 
becomes infinite, resulting in an unboundedness of the functional (1) from below. 
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The geometrical structure of the surfacelike terms suggests that it is convenient 
to  rearrange their contribution in a way which is even more natural than separating 
into the K13 and K24 terms. Namely, i t  is convenient to  separate the normal and 
tangential derivatives in the total contribution, f13 + f24 = fs,,, + fs,* Then the 
most essential part of the K13 term 

- - where gap is the metric tensor of the coordinate system employed, k is a unit 
external normal to S ,  and a summation is implied over repeating subscripts. If the 
coordinate system is chosen so that the surface S is normal to the x3-lines, then 

9.6. Vanishing of contribution of the Kls term to the balance of 
mechanical torques 

\ 

Formula (56) explicitly depends on the surface normal k and thus is invariant with 
respect to  rotations of the sample as a whole (or the coordinate system). For some 
general problems this is very important. For example, let us consider mechanical 
torque that is applied t o  the surface of the nematic sample due to  presence of the 
K13 term. To find the a-component T, of the torque one has15963: (1) to  rotate the 
director, the surface and the coordinate system through the same infinitesimal angle 
w, about the a-axis (in Cartesian coordinates); (2) to  write the transformed free 
energy F'; (3) to  expand the difference F'{n1(x'), kt)  - F{n(x) , k)  in power series 
of w,. The first order term in w, is rawa which is the mechanical work expended 
in order to rotate the sample. 

In the onedimensional case the surfaces are planes and the metric tensor is 
- trivial, gap = hap, while components of the vecotrs x , k  and V before the rotation 
_. are given by 

The K13 contribution to  the free energy is F13 = J d S  fs,*(k, , n,) where fs,* = 
K13(kn)(kV)(kn). To obtain Fi3 = J dS' fs,*(n1(x') , k') we rotate the sample 
shown in Fig. (I),  i.e. the vector k, and director n,, and the coordinates x,. The 
surface area S is a scalar, S' = S. Introducing vector (wl, w2, w3) of the rotation 
angles and the unit antisymmetric tensor ~ ,p ,  we can write the transformed vector 
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components as 

- 
For any scalar function A(n(x) , k)  the total variation 6A under transformation 

,- 

(59)-(61) is defined as 

6A = A(n1(x'), k') - A(n(x), k) . 

It is also convenient to introduce the quantity 8A (the secalled form variations3) 
in which n'(xl) is replaced by nl(x), i.e. 

6A = A(nl(x), k') - A(n(x), k ) .  

To the first order in the small parameters w, of the transformations these variations 
are evidently related a s  r 

a A 
6~ = 6A + - 6 ~ ~ .  

ax, 
The function fs,l depends only on the combinations (kn) and (kV)(kn) and 

does not depend on x explicitly. Therefore, the difference 6 fs,* in the K13 density 
(56) due to the transformation (59)-(61) can be written as 

- -- afspl 6(kn) + afsll 6[(kV) (kn)] 
8 0 4  a[(kv)(kn)l 

where we employed Eq. (62). The form variations entering Eq. (63) are 

8[(kV)(kn)] = (k1V')(k'n'(x)) - (kV)(kn(x)) 

= (k1V' - kV)(kn(x)) + (k1V')8(kn). 
(64b) 

Equation (61), along with the fact that, by virtue of scalars, 
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allows one to reduce Eqs. (64) to the from 

- Then, substituting Eqs. (65) into the definition of 8fs,* (Eq. (62)) and making use - 
of Eqs. (58) and (59) one obtains - 

At the same time, a straightfroward calculation of the second term in the last line 
of Eq. (63) gives exactly expression (66) but with the opposite sign, i.e. 

Thus, the contribution Ta,13 of the KI3 term to the balance of mechanical torques 
vanishes identically, irrespective of the director distribution in the bulk: 

F 

b fs,l = 6F13 0. (67) 

Although formula (57) corresponds to the chosen coordinate system, its use 
would have led to a nonvaishing torque, in contrast to the correct result (67) based 
on Eq. (56). The point is that rotation (61) of the normal to the surface does not 
affect the free energy (57) since the normal k does not enter Eq. (57). Therefore, 
transformations (59)-(61) of the free energy in form (57) correspond to the rotation 
of the director alone while the surface is fixed. In this case, the nonvanishing torque 
is not a surprise. We see that general transformations must be performed only in 
the covariant formula (56). - 

It is relevant to mention here that the derivation of the expression for elastic 
- torque cannot be simplified by including into consideration some external field. For 
- example, suppose that magnetic field Hn is applied to the sample whose direction 

makes the angle R with the z-axis. Then, the equilibrium director depends on R, 
i.e. n = n(x, R). If the sample is rotated through the angle w according to Eqs. (59)- 
(61), the transformed system can be descibed as nl = n' = nw(x, R), H1 = Hn 
(case 2) (we emphasize that n l  = h ( x ,  R) is a secalled virtual state, i.e. is an 
equilibrium distribution neither for H1 = Hn nor for H1 = Hn+,). Since w enters 
the director, taking the derivative of bF with respect to w we obtain the standard 
expression for elastic torque and its balance with the magnetic torque.16 Physically, 
the state equivalent to that of case 1 obtains also by the rotation of the magnetic 
field through the angle (-w) while the director is jixed: na = n(x, R), H2 = Hn+, 
(case 1) (again, n2 has nothing to do with the equilibrium distribution corresponding 
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to  Hz).  Then, however, in contrast t o  case 1 the angle w does not enter n2, and 
hence the elastic contribution to the torque cannot be derived in case 2. Rather, 
the procedure employed in case 2 enables one to derive expression for the magnetic 
torque (since w enters Hz) and its balance with the torque applied to the magnet. 

Recently it has been argued118 that the procedure of field rotation results in a 
nonzero KI3 contribution to the balance of torques. Nonzero K13 contribution was 
obtained in Ref. 118 because the w-independent n2 was incorrectly replaced by the 
w-dependent n~ = n(x, R+w). This n~ is the equilibrium director corresponding to - - 

H 2  = Hn+w rather than to H1 = Hn as it must be (the state n~ = n(x, R+w), Hz = : 

Hn+w is equilibrium rather than virtual). This state "F" differs from those of case - 

2, and, thus, is not equivalent to case 1. Therefore, the procedure employed in 
Ref. 118 differs from those required by the general principle of mechanics. 

9.7. Anomalous Fre'edericksz effect and spontaneous parity violation 
induced by the KI3  t e rm 

As was shown in Sec. 9.4, the equilibrium director configuration is given to order 
(6n)2 by the Euler-Lagrange equations for the functional F2 (1). Moreover, no 
information on R,  is required; hence, no more constants need to be introduced 
into the theory. The surfacelike elastic constants are shown to be unambiguous 
from a microscopic point of view.66 On the other hand, since all an-dependent 
terms in the anchoring energy are much smaller than the Rapini-Popoular and K13 
terms, we can neglect extrinsic an-dependent contributions and thereby assign well- 
defined values to the surfacelike elastic constants. We thus seek an experimental 
situation in which K13 would play a prominent role. One such effect is predicted 
in the standard FrCedericksz g e ~ m e t r ~ . " ~ ~ ~ ~ ~  In these papers, a flat nematic film is 
considered sandwiched between two surfaces z = f h/2 with homeotropic anchoring 
of equal strength W. The linearized Euler-Lagrange equation of the problem has a 
solution 

O(Z) = A sin qz + N cos qz , q = d m  , (68) 

where H is the magnetic field strength, and X, > 0. In the standard treatment 
of the Fr6edericksz transition, it is assumed that because of the symmetry of the 
problem, only the even solution ON(z) = N cos qz should be retained. However, 
for sufficiently large K13, a parity-breaking mode OA(z) = A sin qz can be excited 
which is odd with respect to z = 0 (Fig. 12). 

If K33 > 2K13 only the N mode can be excited. The only difference with the 
standard RBedericksz transition is that the nonzero K13 shifts the threshold since 
K33 is replaced by K33,eff = K33 - 2K13. 

What happens if K33,eff is negative, i.e. K33 < 2K13? The answer depends on the 
thickness of the layer. If the layer is thin enough, h < h, = 2(2K13 - K33)/W, then 
the director behaves as if it has a negative bend constant so that energy has to be 
expended in order t o  produce an undistorted (U) state. The A mode spontaneously 
occurs for zero H. The amplitude A decreases with an increase of H and vanishes 
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Fig. 12. Normal (a) and parity-breaking (b) distortion modes of a thin nematic film with normal 
anchoring at both interfaces. 

(undistorted state (U)). Then, for some H, the N mode appears, its amplitude N 
first increases and, upon reaching a maximum, decreases down to zero. After the 
U regime the A mode appears again and so on. 

If K33 < 2K13, but h > h,, then the A mode is not excited, and instead of the 
sequence A-U-N-U-A- . . . a sequence of the states is U-N-U-N- . . . . The case 
of the initial planar alignment is similar but the critical conditions for the A mode 
and the anomalous behavior are now 21ft131 > K33, K13 < 0.11g*120 

Thus, small K13 just shifts the critical field of the standard Fr6edericksz transi- 
tion. Large K13 can cause spontaneous parity violation of n in sufficiently thin films 
and anomalous Fr6edericksz effect in which the applied field alternatively enhances 
and inhibits distortions. The fact that the anomalous effect is not observed a t  worst 
implies that JK131 < Ks3/2 for the studied materials. Note that recent experiments 
performed for the stripe domain phase in nematic LLC films suggested that for 5CB 
K13 -0.2 K11.121 We consider below the influence of the K13 term on the stripe 
domain phase. 

9.8. Stripe domain spectrum and the K13 elasticity 

The results of previous sections enable one to include the K13 term in the theory of - 
stripe domain phase of Sec. 5.4. General scheme and formulae remain the same as 
for K13 = 0. In presence of a nonvaishing K13, Eqs. (11) and (12), which determine 
the boundary angles in the homogeneous one-dimensional state, are replaced by 
Eqs. (55) which read 

1 
2(02 - 81) + h(W2 I K )  sin 202 = p1 [(02 - el)  cos 282 + -(sin 2e2 - sin 201)] , 

2 
(69) 

1 
2(82 - el)  + h(Wl I K )  sin 281 = p 1  [(e2 - el) cos 281 + -(sin 2e2 - sin 281 )] , 

2 
(70) 
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where p l  = 2KI3/K. The critical thickness (10) of the transition between the 
distorted and undistorted homogeneous states becomes122 

The factor I1 -pl is now replaced by pll = 11 -(2Kz4 - K13)/K I; p l  and pll correspond 
to the total contributions of the director derivatives along normal and tangential 
directions to  the surfaces, respectively, i.e. to fsl and fs,,! introduced in Ref. 73 
(Sec. 8.5). 

The transition homogeneous state-stripe domain state is of the second order and 
for x << 1 can be described by the functional45 

whose coefficients A, D,  P,  Q are unambiguously determined by the solution d l ,& 
of Eqs. (69) and (70); u = 27ry. The perturbations are related to the function G(u) 
and its derivative G' as cp = XG + O(x3),  $J = -X2(a - PZ)G' + O(x4), where 
a and p are u-independent constants. Minimization of functional (72) results in a 
periodic solution G(u) with the wave number 

I' 

x = 27rhlL = d-0.4 DX / 3 P ,  (73) 

where the coefficient 0.4 results from nonlinear interaction of the harmonics. As it 
is seen from Eq. (73) the stripe domains with x << 1 do not exist for Q 5 0 since in 
this case min F{G(u)} corresponds to  x + oo. The inequality Q > 0 takes place for 
h < hQ, where hQ is defined by Q(hQ) = 0 which implies that the long-wavelength 
domain phase exists only for h < hQ. Thus, Eq. (73) together with the value of hQ 
completely determines the long-wavelength spectrum. 

The function ~ ( h )  possesses the following features. Its zeros hd and h, are the 
roots of D(h). Hence D < 0 and D > 0 correspond to  the domain and homogeneous 
states, respectively. The inequality D < 0 holds for hd < h < h,. Of course, this 
picture is meaningful only below h ~ :  the upper boundary of the domain phase is 
hc = min(h,, hQ). If h, = h,, then at the right end of the spectrum x vanishes 
as (h, - h)'I2, which is illustrated by curves 1-3 in Fig. 13; if hc = hQ, then ~ ( h )  
jumps up abruptly (curve 4 in Fig. 13). An exact analytical'formula can be found 
for the lower boundary hd of the spectrum, i.e. 

while the upper boundary h, can be found only numerically from transcendental 
Eqs. (69) and (70), and D = Q = 0. The single maximum of x at h, is always 
somewhat rightward h,. An important scaling parameter of the spectrum is the 
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Fig. 13. Wavenumber x of the stripe domain phae  as a function of film thickness calculated using 
Eq. (73) and the following parameters: (1) K13 = -0.205Kll, L1 = 0.76pm, L2 = 0.86pm, 
ha = 0.06pm, pi1 = 1.0; (2) K13 = 0, L1 = 6.65pm, L2 = 7pm, ha = 0.35pm, pl, = 0.9; (3) 
K13 = 0, L1 = 0.6lpm, L2 = 0.76pm, ha = 0.09pm, pi, = 1.187; (4) K13 = 0, L1 = 0.61pm, 
L2 = 0.7pm, ha = 0.09pm, p11 = 1.2; t = 0.63 for all the curves. 

ratio q = h,/hm. If L1 - L2 .V L1 - L2 this pararnter is close to 1 (curve 2); the 
larger q can occur only if ha << L1, L2, which is the case for L2 - L1 << L1, L2 
(curve 1, Fig. 13). 

The general picture is that increase of pll causes both an increase of h, and sub- 
stantial decrease of ha (compare curves 4 and 3). Depending on the other parameters 
of the problem, these two effects may shift the upper end h, of the spectrum to- - 
wards larger or smaller h. Negative K13 favors growth of both h, and q. This is 

- 
illustrated in Fig. 13. 

F High sensitivity of the stripe domain spectrum to small variations of K13 and 
K24 (Fig. 13) allows one to anticipate that both K13 and K24 can be found by 
comparison of theoretical and experimental curves ~ ( h ) .  Such an experiment was 
performed recently.121 It turned out that the agreement between the experimental 
and theoretical curves ~ ( h )  can be provided only when K13 # 0. For 5CB it was 
found that K13 m -0.2Kll and K24 FS -O.lKll or K24 = 0.9K11 (the two values 
of K24 emerge because only the absolute value pll enters the theory). Curve 1 in 
Fig. 13 corresponds to the best fit of the experimental data (for more details, see 
Ref. 121). 

The stripe domains are not the only example of periodic patterns in the LLC 
films. Figure 14 shows two other typical textures: cellular patterns formed by 
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Fig. 14. Cellular patterns with strings that do not erminate at the singular points, h w 4 4 m (a) 
and lattice of point defects, h 0.3 4 m (b) (SCB/glycerin). 

strings and a lattice of point defects. Note that these strings do not terminate at 
point defects (as strings shown in Fig. 6 ) .  An intriguing beauty of patterns in the 
LLC films is a real challenge for the theory of liquid crystals. 

10. Conclusion 

The present situation with KI3 and K24 is similar to that of the Kz2 elastic con- 
stant about thirty years ago when its value was not known.123 Over these years 
joint efforts of the theoretical macroscopic approach and experiment have made the 
twist elasticity a well-defined physical idea and Ka2 a reliably measured quantity. 
We believe that the same approach will allow us to comprehend the nature of the 
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divergence or "surfacelike" elasticity of liquid crystals. Each subject, however, re- 
quires of the researcher first to find the physical situations where the phenomena 
under investigation would be most pronounced and could have led to  qualitatively 
new effects. The LLCs represent such physical situations for the surfacelike elastic- 
ity of the nematic phase: the majority of the considered structures are caused by 
the particular mechanisms of spontaneous symmetry violation associated with the 
divergence terms. 

The LLC geometry is useful to study the surfacelbulk balance also in layered 
liquid crystals such as SmA. We did not consider the SmC LLC films in this review, - but preliminary results124 indicate that non-chiral SmC films placed on a glycerin 
surface reveal many striking patterns similar to that in the nematic films (high- 
strength defects, strings and periodic domains). The patterns in SmC films might 
be also connected with the divergence elasticity and hybrid character of alignment. 
The last assumption is supported by the observation of high-strength defects in 
SmC and SmF films with free surface placed on glass  substrate^.'^^ 

There are a number of reports on striped patterns in thin SmC films either 
freely suspended in air126 or deposited on a rigid substrate with unidirectional az- 
imuthal a n ~ h 0 r i n g . l ~ ~  Theoretical  model^^^'^^^'^^ explained the stripe domains of 
SmC freely suspended films as a result of chiral nature of the molecules. How- 
ever, there are recent observations of thk stripe domain phase in hexatic liquid 
crystal films7 and in Langmuir r n ~ n o l a y e r s ~ ~ ~ ~ ' ~ '  composed of nonchiml molecules. 
These stripe domains can be explained as a result of the up-down asymmetry of the 
fi1ms.132~1331'30*7 Therefore, the symmetry breaking mechanism in SmC films and 
Langmuir monolayers is quite similar to  the divergence (K24) mechanism described 
for the stripe phase in non chiral nematic films jplaced between two different me- 
dia (see Refs. 35, 45, 46 and 121 and Sec. 5.4 of the present review). In fact, by 
representing the director n through its projection onto the film plane c, it is easy 
to see that the K13 and K24 terms in the three-dimensional Frank-Oseen elastic 
functional produce terms such as V . c~~~ responsible for the splay-stripes in the 
twedimensional elastic theory.133 - 

From the experiment&l point of view, the LLCs enable one to  apply optical 
methods including microscopy to  study essentially submicrometer phenomena. The 
parameters of the system (temperature, film thickness, boundary conditions) can 
be controlled. From the theoretical point of view, the LLCs give the unqiue oppor- 
tunity to  study the general problem of divergence terms in free energy functionals. 
Heuristic importance of such an investigation is not restricted only to  liquid crys- 
tals. It might, in principle, point to the situations in other areas of physics where 
surfacelike terms are meaningful (e.g., ferromagnets). 

The physical content of the LLCs in not, however, exhausted by the problem 
of the divergence elasticity. Since in many cases the shape of the liquid crystalline 
film is not flat, the pattern formation can be strongly affected by the geometri- 
cal anchoring.42 On the other hand, the method of the LLCs preparation in the 
Langmuir trough can be used to  study the mechanisms of the physcial anchoring, 
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since the parameters of the system (e.g. presence of surfactant, concentration of 
ions, film thickness, density) can be easily modified and controlled. Other physical 
mechanisms that govern behavior of the LLCs are connected with flexoelectricity 
and surface polarization that  might occur at the interface because of the ferroelectric 
ordering and presence of ions. 
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