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A INTRODUCTION 

Defects in nematic liquid crystals are reviewed at three levels: (1) topological classification; (2) elastic 
features; (3) experimental observations. 

B TOPOLOGICAL CLASSIFICATION 

Defects in uniaxial nematics are described in terms of the spatial distribution of the director n(r). 
There are two types of functions n(r): those containing singularities (at which n is not defined) and 
those without singularities. For three-dimensional nematics, the singular regions may be either zero- 
dimensional (points), one-dimensional (lines), or two-dimensional (walls). These are the defects. 
Whenever a non-homogeneous state cannot be eliminated by continuous variations of n(r) (i.e. the 
homogeneous state n(r) = const cannot be generated), it is called a topologically stable, or simply a 

\' 

topological defect. If the inhomogeneous state does not contain singularities, but nevertheless is not 
deformable continuously into a homogeneous state, the system is said to contain a topological 
configuration (or soliton). 

Wall defects as singular defects are not topologically stable [I]. The energy per unit area of a singular 
wall -u/a2 is defined by the energy U of molecular interactions and the molecular length scale a. If 
such a singularity is replaced by a smooth director reorientation over a macroscopic length 1 >> a, its 
energy reduces to U/al - W1; here K - U/a is an average value of the Frank elastic constants. Thus the 
singular walls are unstable and tend to smear out. The term 'wall' is often used to describe continuous 
reorientation of the director field by an angle 7c or 2x. When the macroscopic width I of the wall is 
fixed by some external factor, such as electromagnetic field or surface anchoring, the wall is a 
topological soliton. 

Line defects can be topologically stable. Topological stability of defects is controlled by the order 
parameter space of the medium [2,3]. This space is the manifold of all possible values of the order 
parameter that do not alter the thermodynamical potentials of the system. In uniaxial nematics, the 
order parameter space is a sphere with pairs of diametrically opposite points being identical. Such a 
sphere is denoted as s2/z2; every point of s2/z2 represents a particular orientation of n. Any 
reorientation of the nematic as a whole leaves the thermodynamical potentials unchanged. In addition, 
since the nernatics are non-polar, n = -n, any two diametrically opposite points describe the same state. 

Imagine now a singular line in a bulk nematic (FIGURE 1); the goal is to verify its topological stability. 
Let us surround the line by a loop y; the only requirement is that y does not approach the singular 
region too closely (the 'safe' distance is usually a few molecular lengths), so that the direction of n is 
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well-defined at every point along y. The function n(r) maps the points of a real space along y into the 
order parameter space. When one goes around y, n(r) draws some closed contour r on s2/z2 that might 
be of two types: (a) a contour that starts and terminates at the very same point (for example, a circle); 
(b) a contour that connects two diametrically opposite points of ~ ~ 1 ~ 2 .  Contours (a) can be 
continuously contracted into a single point. When r shrinks smoothly into a point, the corresponding 
director field in real space becomes uniform, n(r) = const, and the singularity disappears. Contours (b) 
cannot be contracted: under any continuous deformations, their ends remain the ends of a diameter of 
s2/z2. The corresponding defect lines are topologically stable since they cannot be transformed into a 
uniform state (although they can be transformed one into another). 

FIGURE 1 Topologically unstable (a) and stable (b) defect lines - disclinations in a uniaxial nematic. 

We conclude that there are two classes of nematic line defects, called also disclinations: topologically 
stable and unstable. Transformation between these classes is possible only when the nematic order is 
destroyed at the whole half-plane ending at the line. The energy of such a singular wall is much larger 
than the energy of a singular-line, which gives a physical interpretation of the topological stability of 
disclinations. 

Point defects-hedgehogs are another type of topological defect in the bulk nematic [3]. The simplest is 
a radial hedgehog n(r) = &fl$ra point with a radial director field around it, as shown in FIGURE 2. 
Generally, to elucidate the stability of a point defect, it is enclosed by a closed surface (e.g. a sphere) a. 
The function n(r) produces a mapping of a onto some surface C in the order parameter space. If C can 
be contracted to a single point, the point defect is topologically unstable. If C is wrapped N z 0 times 
around the sphere s2/z2, the point singularity is a stable defect with a topological charge N # 0 (see 
FIGURE 2). Analytically, 
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for the director parametrised as n = (sin 8 cos cp; sin 8 sin cp; cos 81, with the polar angle 8 and the 
azimuthal angle cp being fbnctions of the coordinates u and v on o. 

I 

INI=l INI=l 

(a) (b) (c) 

FIGURE 2 Topological point defects in a uniaxial nematic. 

Since n = -n, each point defect can be equally labelled,,by N 
and -N. The coalescence of two points NI and N2 can result 
in a defect with a charge IN1 + N2) or PI - N2), depending on 4 
the presence of disclinations in the system and the path of /--k. 
coalescence [3]. 

Point defects-boojums (see FIGURE 3) are special point 
defects that, in contrast to hedgehogs, exist only at the 
boundary [4]. Any attempt to move a boojum from the 
surface into the bulk is accompanied by energetically costly 
additional deformations. In addition to the integer N, 
boojums are characterised by a two-dimensional topological 

FIGURE 3 An axisymmetric boojum at 

charge k of the unit vector field t projected by the director 
a surface with tangential anchoring. 

onto the surface: 

Here s is the natural parameter defined along the loop at the surface enclosing the defect core; k shows 
how many times t rotates by the angle 2n when we move once around the defect. 

Bounded nematic volumes. Usually, defects are considered as perturbations of the uniform state, 
caused, for example, by some mechanical admixtures. There are, however, many situations when 
topological defects correspond to the equilibrium state of a system. Nematic droplets suspended in an 
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isotropic matrix (a fluid such as water or a polymer such as polyvinylalcohol) and inverted systems 
(water droplets in a nematic matrix) provide the rllost evident examples. 

The balance of the elastic energy of director distortions and surface energy defines the equilibrium of a 
bounded nematic such as a droplet. Representative estimates are for the isotropic part of the 
surface energy, w a 2  for the anisotropic surface energy, and, finally, KR for the elastic energy. Here R 
is the radius of the droplet, a0 is the surface tension coefficient and W, is the surface anchoring 
coefficient, which measures the energy penalty for director deviations fiom some preferred surface 
orientation (e.g. molecular interactions might favour perpendicular orientation of n at the boundary). 
Usually, a. >> W, so that the droplets are practically spherical with the interior director field defined 
by the balance of KR and wa2. 

Small droplets with R << K/W, avoid spatial variations of n at the expense of violated boundary 
conditions. In contrast, large droplets, R >> K N ,  satisfL boundary conditions by aligning n along the 
preferred direction(s) at the surface. Since the boundary of the droplet is curved, this anchoring effect 
leads to a distorted director distribution in the bulk, for example a radial hedgehog in the case where the 
surface director orientation is normal. With typical values of Wa = ~ / m ~  and K a lo-" N, the 
characteristic radius R is of the order of 1 pn. Generally, bounded nematic volumes at scales 
R >> ma contain defects with total topological charges satisfLing the following two relationships that 
have their roots in the PoincarC and Gauss theorems of differential geometry: 

Here E is the topological invariant of the bounding surface, called the Euler characteristic; for a sphere 
E = 2 and for a torus E = 0. FIGURE 4 shows nematic droplets freely suspended in a glycerin matrix; 
each droplet contains a pair of boojums at the poles, kl = k2 = 1, in agreement with the first expression 
of EQN (3). 

FIGURE 4 Bipolar nematic droplets with point defects-boojurns at the poles. The droplets are 
suspended in a glycerol matrix and illuminated by polarised light. The inset 

shows the director configuration at the s h c e  of the droplet. 
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C ENERGETICS OF THE DEFECTS 
* 

Disclinations within the same topological class but of different configurations can be continuously 
transformed into one another. Their relative stability depends on the Frank elastic constants of splay 
(K,), twist (K2), bend (K,) and saddle-splay (K24) in the elastic free energy density functional: 

1 1 1 
F = - K, (divn12 +-K, (n.curln)' + - K, (n x curlnl2 - K14div(n.divn + n x curln) 

2 2 2 
(4) 

Here we assume the so-called K13 constant to be zero. 

Frank [5] considered planar disclinations in which n is perpendicular to the line. For such disclinations, 
the K24-term in EQN (4) is always zero. In the one-constant approximation K1 = K2 = K3 = K, the 
equilibrium director field around the planar disclination reads 

n = {cos[kcp + c], sin[kcp + c], 0) (5) 

where cp = arctan (ylx), x and y are Cartesian coordinates in the plane normal to the line, and c and k 
are constants; k is called the strength of the disclination that shows the number of 2x-rotations of the 
director around the line; it can be integer or half-integer. For the line in FIGURE l(b), k = 112, while 
for the line in FIGURE l(b'), k = -112. 

(. 

The energy per unit length (line tension) of a planar disclination is 

where R is the characteristic size of the system, and rc and Fc are respectively the radius and the energy 
of the disclination's core, a region in which the distortions are too strong to be described by a 
phenomenological theory. 

The Frank theory does not distinguish lines of integer and half-integer strength, except for the fact that 
the lines with lkl= 1 tend to split into pairs of lines with IkJ = 112, which reduces the energy, according 
to EQN (6). However, the lines of integer strength are unstable in a more fbndamental topological 
sense: they can be continuously transformed into a non-singular uniform state, as already discussed. 
Imagine a circular cylinder with normal orientation of molecules at the boundaries, as shown in 
FIGURE 5(a). The planar disclination would have a radial-like director field normal to the axis of the 
cylinder. However, the director can be reoriented along the axis, as indicated in FIGURE 5(b). The 
process, called 'escape in the third dimension', is energetically favourable, since the energy of the 
escaped configuration is 3xK [6,7]. 

Detailed calculations of the disclination energies have been performed by Anisirnov and Dzyaloshinskii 
[8]. They showed that, in addition to planar lines, 'bulk' disclinations can exist, in which the director 
does not lie in a single plane. Planar lines are stable when 2K2 > Kl + K3; bulk lines are preferable 
when 2K2 < K1 + K3. 
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FIGURE 5 A cylinder with a disclination k = 1 (a) and an escaped configuration (b). 

Point defects. Unlike point defects such as vacancies in solids, the topological point defects in 
nematics cause disturbances over the whole nematic volume. The energy of the point defect is 
proportional to the size R of the system. For example, 

for the radial hedgehog (see FIGURE 2(a)) with 

and the hyperbolic hedgehog (FIGURE 2(b)) with 

respectively [9]. 

Interaction between defects. The interaction energy between two planar disclinations with strength k, 
and k2 separated by a distance d is [lo] 

The lines with opposite signs of k attract each other. Note that if kl = -kz the energy of the pair does 
not depend on the size R of the system. 
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D EXPERI[MENTAL OBSERVATIONS 

When viewed under a polarising microscope, a nematic slab between two glass plates shows distinctive 
textures. The simplest one is the homeotropic texture that occurs when the director is oriented strictly 
perpendicular to the bounding plates. Between crossed polarisers, the entire area of the texture appears 
dark, since the optical axis of the nematic is oriented along the optical axis of the microscope. If the 
surface orientation of n is tangential (n is in the plane of the plates) or tilted conical, then a so-called 
Schlieren texture can form. The main feature of Schlieren textures (see FIGURE 6) is the presence of 
two types of centres fiom which two or four extinction bands emerge. The extinction bands (also called 
brushes) occur in areas where is parallel to either polariser or analyser of the microscope. The 
centres with two bands have a sharp (singular) core, insofar as can be seen, of submicron dimensions 
and correspond to the ends of disclinations. The two ends of the disclinations can be located on the 
opposite plates or on the same plate. The centres with four brushes correspond to boojurns, or, on rare 
occasions, to hedgehogs. On some occasions, points with higher numbers of brushes are encountered 
[11,12]. There is a simple relationship between the number of brushes B emerging fiom the point and 
the defect strength k: Ikl = Bl4. Note, however, that this relationship has limited validity: when the 
director field is distorted non-uniformly around the defect, the number of brushes fails to provide the 
information about k [12]. 

- -- 

FIGURE 6 A typical Schlieren texture in a film of 4-pentyl-4'-cyanobiphenyl (thickness 23 pa) 
between two glass plates coated with thin layers of glycerol. 
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E ENTANGLEMENT OF DISCLINATIONS 
* 

Disclinations can pass through each other. Experiments [13,14] show the process of reconnection: two 
initial lines exchange ends as they cross so that each of the two ensuing lines has segments of the two 
original disclinations (see FIGURE 7). The result of crossing depends on the local director field in the 
region of crossing. In the cells that favour a planar distribution of the director around the disclinations, 
the result of crossing depends on the total strength of the pair [14,15]: kl + k2 = 0 favours scheme (a) 
and kl + k2 = 1 favours scheme (b) shown in FIGURE 7. 

D B 
FIGURE 7 Two possible results of reconnection of line defects. 

F CONCLUSION 

Although the topological classification of defects in nematics has been firmly established, there are still 
many open questions concerning the behaviour of defects in external fields, their dynamics and 
interaction. Note that the classification of defects in biaxial nematics is drastically different from that 
in the uniaxial nematics considered here: in biaxial nematics, there are no hedgehogs (although boojums 
are allowed), and there are five topological classes of disclinations. Some pairs of these disclinations 
cannot cross each other without a creation of a third disclination that joins the original pair [16]. A 
detailed discussion of defects in liquid crystals can be found in the book by Kl6man [17]. 
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