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Monte Carlo and theoretical studies of thin 3D films of biaxial and uniaxial nematics with tangential
boundary conditions show distinct differences in structure and evolution of topological defects. In the uniaxial
films, defects of strengtk=+1 are point defects that bear no bulk singularity and disappear by annihilation
with each other. In the biaxial film&= =1 defects are true singular bulk disclinations that split into pairs of
k==1/2 lines; the latter disappear by annihilation processes of the #ypR—1/2=0. These observed
differences are of relevance for the current debate on the existence of biaxial phases.
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Biaxial nematicsBNs) are currently the target of a fasci- dj; = — €;{P2(CoSB;j) + 2N [ R wij) + R3g( wij)]
nating and controversial seargt]. They have been pre-
dicted by theory[2] and observed by computer simulations +4)\2R§2(wij)}. 2

for lattice [3], hard core[4], and attractive-repulsive Gay-

Berne[5] systems, but their existence in real thermotropics isThe particle positions are fixed at the sites of a simple
still questioned 6]. In particular, deuterium NMRDNMR) NXNXd cubic lattice and the strength of interactiep is
could not find evidence of phase biaxiality,8] in various =0, wheni andj are the nearest neighbors and zero other-
mesogens claimed to be BN on the basis of conoscopwise. w=(a,8,7) is the set of Euler angles for the orienta-
While the interpretation of DNMR is straightforward, the tion of a particle.P, is a second Legendre polynomial and
method is not very sensitive to small biaxialities and thus aRann are combinations of Wigner functions, symmetry
complementary reliable and sensitive optical techniqueadapted for thé,,, group of the two particlef3,12). A is a
would be highly desirable to establish the existence or not ofnglecular biaxiality parameter, when=0, ®;; reduces to
this new phase of matter. Optical probing of topological de-the Lebwohl-Lasher potential for UN.3]. Tangential BC are
fects is of special interest, since the symmetry difference o§et py fixing randomx,y) in-plane orientations of the direc-
biaxial and uniaxial order might lead to drastic differences inyor n (orientation of the longest molecular axest the top
the properties of defects in BN and uniaxial nemafldls)  and bottom surfaces and a random alignment of the orthogo-
[9.10). Chandrasekhaet al. [11], noticed that polarizing- nal directorsi and m. We leave empty space at the four

microscope textures of their candidate BN contained OnI}1ateral faces of the lattice which is updated following Me-

defects of half integer and never of integer strength. Sinc . . . : .
the UN phase shows defects of both types, the observatio?rrlOpOIIS [14,19. We simulate lattices of various sizes for

was suggested as a diagnostic test for biaxiglifyl. How- =0,0.2,0.25,0.3 at some selected temperatlrées-kT/e
ggeste . 9nc . . and different couplings with the surfaces, in particulr,
ever, topologically integer lines are allowed in 8Bl thus =1/2. Simulations start with bulk spins perpendicular to the
the test relies on energetic rather than topological features, ) . : SPIns perpendict .
surfaces to avoid any in-plane bias. The polarizing micro-

i.e., the appearance of defects should depend not only on thsecope textures were simulated usingMumatrices 12,16,

symmetry of the nematic phase, but also on the relative val- UN simulations show that a typical coarsening network

ues of elastic constants and of surface anchoring. There Bvolves mainly defects with four dark brushes and strength

then a strong need for a detailed analysis of the differences {0 .
be expected in biaxial and uniaxial thin films, as used intk._i1 (the director rotates by2 around the defect cenjer

experiments. Here we investigate the features in the defe Y- L 1_'he defects dlsappe_ar by pair annlhllatlﬁrl—_l .
structure of UN and BN by Monte CarltMC) [3,12] and =0, as illustrated by the pair enclosed by aAsquare in Fig.
analytical techniquef9]. We simulate the schlieren textures 1(b). The defectsk=+1 are not singular, as reorients

conditions(BC) starting from the lattice model Hamiltonian, kKnown “escape into third dimension”in a cylindrical sample
[17,18, surface anchoring at the bounding plates hinders re-

orientation by forming a pair of point defects—boojums—
capping the line at the plates.

UN:HEEJT P;; +Ji§f P, @) For BN simulationd 3], Fig. 2 clearly shows a difference
i#] jes with UN: althoughk=*1 defects do appear at the begin-

ning of simulations, they quickly split into two-brushed de-

where, S are the set of particleping in the bulk and at fe_:cts.withk=A?:1/2. Similarly to the escape into third cﬁme_n-
the surfaces, respectively, adel; is the pair potentia[3] ~ Sionin UN,nin k==1 dgfects reorients along thAe axis, Fig.
depending on the relative orientatias; of the two particles, 3; however, this escape afimplies a singularity il andm.
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FIG. 3. Snapshots of the longplack and short(grey) axis of

FIG. 1. Evolution of a UN texture for a 120120x 16 lattice at  two orthogonal vertical sections of the biaxial lattice model cen-

T*=0.4 andJ=1/2 after 2(a), 5 (b), and 60(c) kcycles. Optical tered at the four brushes defect indicated in Fig,).2
parameters: refractive indiceg=n,=1.5 andn,=1.7 [16], film o ) . _
thicknessd=5.3um and light wavelength 545 nm(d) Vertical  ture should(a minimize the elastic energy functional, writ-
cross section of thk=1 defect. ten in the one-constant approximation and in cylindrical co-
ordinates (,¢,z) as

Qualitatively, such a hybrid charactéescapedh and singu- K (2 a2 R . A
lar T, m) of k= =1 disclinations can be explained by the fact FUZEJO dd’f dlzdzfo [(divn)?+(curln)®]rdr  (3)
that the elastic constarit, associated witm is larger than B

K, Km [19]. K, is unlikely to be very different from the and(b) satisfy the BOn,(r, ¢, =d/2)=n,(R,$,z)=1. There
valuesK in UN, whereaX,, K, are generally smaller, es- are two planar structures that satisfy BCzat = d/2: a sin-
pecially near the BN-UN transition. Thie==*1/2 lines do  gulark=1 line with the energy20]

not show escape af. Apparently, the splitting ok=+1 "

lines into k= *1/2 pairs reduces the elastic energy associ- Fsing= mKd(In(R/ry) +uy), 4
ated withK,; this and other elastic features are analyzed

below. We start with UN elasticity and to study the schlieren® and a pair of singular linek, =k,=1/2 at a distancé <R

textures in a cell with an infinitely strong degenerate tangen with [21]
tial anchoring, we consider a cylindrical domain of radius 1 2R?
R>d and radial orientation afi at R. The equilibrium struc- Fpair=7Kd 5'”@+2Uu2), 5

ri~rq, are the molecular radii of the singular cores that
carry the normalized core energy~uq,»~1.

An analytical solution for the escaped disclinations is
known only for infinitely long cylindrical samples but not for
flat films with anchoring at= = d/2. To find the solution for
the axially symmetrik=1 line in a flat sample, we employ
the free energy

dr2 R
ar—WKj dzf dr
dz Jo

—26 ,Sirfo+ 0 ,sin26|,

Sh
ro%+re’+ —
: : r

(6

valid for any axially symmetrical solution, escaped or not,

FIG. 2. [(a)-(d)] from top left to bottom right Evolution of a ~ With 6(r,z) the angle between and thez axis. The sub-
BN texture (\=0.2) for a 120< 120X 8 lattice atT*=0.1 andJ scripts after comma denote the corresponding spatial deriva-
=1/2 after 5(a), 9 (b), 13(c), and 60(d) kcycles. Here we employ tives and the two last terms are complete differentials. For
ny=1.54,n,=1.51, andn,=1.61. the escaped line in a film with an infinitely strong tangential
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anch_oring [6(0,2)=0,0(r,+=d/2)= 0(R,Z):_7T/2], the 0, fb~ %{Kn[(dlv ﬁ)2+(curl ﬁ)z]+Km[(diV r'r‘])2+(cur|r'h)2]
term integrates to zero and tig term contributesrKd. For
r>d, the surface anchoring dominatey,z) —(=/2), and +K[(divD)2+ (curlT)2]}. (12)
the bulk equilibrium equation

We consider a strong homeotropic anchoring for
[l1,(r,¢,=d/2)=1] and radial orientation oh at the outer
has a linearized solutioW’(r,z)=m/2—6(r,z), which is  cylinder,[n,(R,#,z)=1]. The energy of planar € ¢&,) dis-

r20 ,,+1%60 . +r6 ,=sinfcosh )

even inz because of the symmetric BC &t =d/2, clinations in BN is obtained replacir§ in Eqgs.(4), (5) with
K,+K.. The escaped configuration in BN lowers the en-
V(r,z)= E A K (Ol ) COSAmZ, (8) ergy by replacing the singularity in with that in the short
m=0 directori [19]. WhenK,~K,, m in the escaped configura-
wherev=i=\—1, q,= 7(2m+1)/d, andA,, are numeri- tion remains normal t@, (m=¢,) and the free energy de-

cal coefficients. The modified Bessel functisi(q,,r) and  pends on the anglé(r,z) betweenn andz axis
thusW have an exponential asymptotic dedag]. " .

Dimensional analysis allows us to write the energy of b _W(Kn+K|)f dzf dr
—di2 T

Sirfé
escapek=1 line as ax—

r(6%5+65)+w

Fese= midlIn(Rid) +gl, © —26 (1—wcog9)+wa sin 20
Z T

whereg is the universal numerical constant to be determined.

To calculateg, we use the direct variational method. We +ad(K+K)[In(R/ry) +up], (13

construct the probe function following the idea of Kleman

[9] that the escapeki=1 line perpendicular to a boundary is wherew=(1-¢)/(1+ &) and §=K, /K, determine the ef-

capped by a surface point defect—boojum. The function fect of biaxiality; O<é&=<1 is qualitatively similar to. in MC
simulations. The two last terms of the integrand are complete

ndr differentials. For the escaped configuration with BC
01(r,z)=arctan(d/2)—2_22, 10 4(r,,2)=0, 6(r,+d/2)=6(R,z)=m/2, the 6, term inte-

grates to zero, and thé, term contributesm(K,—K,)d.
with a dimensionless variational parametersimulates an  Similarly to UN, the free energy of the escaped configuration

escaped disclination capped by a radial boojura=at-d/2 IS

and a hyperbolic boojum at=d/2, but has to be modified to

yield thgpexponentialJ decay oF = (7/2)— 6 asr—x. We Fese= md[KqIn(R/d) +KiIn(d/ry) + KnIn(R/Tp)

do this in two different ways(i) We restrict6,(r,z) to a +Kg(&)+ (K +Kup], (14)

cylindrical region 0<r <a and use¥(r,z) outside it, choos-
ing the A, to provide continuity atr=a. (ii) We directly  wherer,, anduy, are the radius and the normalized energy of
insert the exponential saturation 92 into 6;(r,z) to get  the core singular in botth and m; g(&) is the universal
dimensionless function determined below. To calcugié®),
ndrexpr/a) 1y e use again the approach@s and (2) of the UN case,
(dr2)>-z% (11) namely, the probe function®,(r,z) supplemented by
WY (r,z) and 6,(r,z). The only difference is that in the lin-
The minimum values of and the corresponding values of earized solution for¥(r,z), Egq. (8) K, should haver
variational parametera and » are: (1) g=4.187, a/d =i\w, because the bulk equilibrium E€) in BN is of the
=0.1925, »=0.9894 and(2) g=4.196, a/d=0.7105, form r26,,4+r20 . +r@ =wsinfcosd. Minimization of
=0.8181. The values df for the different probe functions ngc with respect toa and » leads to theg(¢), a(¢), and
are very close, and we conclude tlpt 4.1 within 2% ac-  7(£) shown in Fig. 4. Wherg— 1, then the nonlinear term
curacy. According to Eqg4), (5), and(9), the escaped struc- w decreasesw—0. Therefore, the linearized solution
ture is more stable than a singul&r=1 line whend W (r,z) (8) is close to the exact one even for smaldl. As
>r;exp@—uy and than a pair of singular linek;=k,  seen in Fig. 4, function no. 1 produces smaller valueg of
=1/2 whend>ry,L/2exp@—2uy5). Both conditions are than no. 2 and the optimum radius of inner cylinddor the
satisfied even for submicron celtb>>200—500 nm(cf. Fig.  probe function no. 1 shrinks &sincreases. We now analyze
1). Soft anchoring would facilitate the escape even forthe stability of BN defects, Eqs4), (5), and(14) assuming
smallerd. Note that the analysis above is valid when ther,~r,~ry,, u;=uy,~u,, and remembering thaf —K,
elastic constants are close, as in many low molecular weight K,,,. We find the following cases.
materials. (a) The escaped configuration is more stable than a singu-
We now turn to BN, whose elastic energy density can bdar k=1 line whend>d¢;=r,expg{[g(&/(1—&]—uy}. The
approximated by neglecting the mixed elastic constg2f§ conditiond>d,, is satisfied in samples of reasonable size
in a one-constant model for each director, (microng, if the biaxiality is not very strong. For example,

0,(r,z)=arcta
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be involved in the transformation of the planes =1 line

into the pairk;=k,=1/2. Escape ok= *1 line is a process
with no energy barrier, while the splitting of a plankas

+1 line into a pair of cores has a barrielK per unit length.

MC simulations, Figs. 2 and 3, demonstrate indeed that the
k==1 lines first escape into the third dimension and then
split into pairs ofk, =k,= %+ 1/2 disclinations.

In summary, for UN schlieren textures, we have found an
explanation for the observation that defects with four brushes
correspond to surface point defects with escaped director in
the bulk. Even an infinitely strong surface anchoring cannot
prevent such an escape in the slabs of reasoriablemicron
and more thickness. In BN, th&«= *=1 disclinations can be
hybrid: n director escapes, whereas the “short” directors

FIG. 4. Dependencieg(¢), a(£), and (&) for probe functions ~ form a singularity along the defect axis. Such an escape is
no. 1 and no. 4see text favorable when the biaxiality is weak, i.e., the elastic con-
stants for “short” directors are noticeably smaller than that

for n. If the biaxiality is strong, the planar disclinations can
split into pairs ofk=*1/2 lines. However, the splitting is
not a universal feature of the biaxial phase: first, the escaped
configurations might be stable for weak biaxiality; second,
they might appear as transient features whdo=at 1 line
4 ) splits into a pair of singulak= *=1/2 lines. Computer simu-
(b) As compared to singular lindg =k, =1/2 separated |ations have allowed us to run virtual experiments showing
by L, the esc?/?leidg) configuration is stable whérdc;  gifferences in the optical textures of BN and UN and testing
=rpL/2 (L/ry) e'».(r[(g—Zub)/(l—g)].. If gs'O.l (say, the theory.
near the BN-UN transition the escaped lines might be pre-
ferred in samples of reasonable size. When the biaxiality is We acknowledge support by NATO CR@GGrant No.
strong, any macroscoplc makes the paik;=k,=1/2 pref-  961264; INFN Grant No. I.S. BO12C.C. and P.p, NSF
erable to the escaped line. E.g., wihk 0.3, one estimates ALCOM (Grant Nos. DMR-20147 and PRF/ACS 35306-
d.,~5L, a large quantity indeed. However, even in theAC7) (O.D.L. and S.V.9; MURST, CNR, University of Bo-
strongly biaxial system, the escaped configuration might stillogna, and NEDO Japa(C.Z.).

even if¢=0.8 andg~1.5, see Fig. 4, the critical thickness is
rather small:ds;~1Cr,. This result agrees with the MC
data thatn escapes in the disclinatioris=+1. For strong
biaxiality, £—1, d;; diverges:K, andK,, become close to
K, and the escape brings no energy gains.
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