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Three-dimensional director structures of defects in Grandjean-Cano wedges of cholesteric liquid
crystals studied by fluorescence confocal polarizing microscopy
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We use a nondestructive technique of fluorescence confocal polarizing microscopy to visualize three-
dimensional director patterns of defects in Grandjean-Cano wedges filled with a cholesteric liquid crystal of
pitch p=5 um. Strong surface anchoring of the director causes a stable lattice of dislocations in the bulk.
Optical slicing in the vertical cross sections of the wedges allows us to establish the detailed structure of
dislocations and their kinks. Dislocations of Burgers vetterp/2 are located in the thin part of the sample,
very close to the bisector plane. Their cores are split into a pair §f and\ * 12 disclinations. Pairs ok /2
and 712 disclinations are observed when the=p/2 dislocation forms a kink. The kinks along the=p/2
dislocations change the level of dislocations bp/4 and + p/2; these kinks are confined to the glide plane
and are very long(5—-10 p. Above some critical thickneds, of the wedge sample, the dislocations are of
Burgers vectob=p. They are often found away from the bisector plane. The cole=gf dislocations is split
into a pair of nonsingulak ~¥? and\ " ¥ disclinations. The kinks along the= p dislocation are of a typical
sizep and form cusps in the direction perpendicular to the glide plane. At the ausf?,andx "2 disclina-
tions interchange ends. Other defect structures inlude “Lehmann clusters,” i.e., dislocations of zero Burgers
vector formed by two. ~¥? and two\ "2 disclinations and dislocations of nonzero Burgers vector with a core
split into more than two disclinations. We employ the coarse-grained Lubensky—de Gennes model of the
cholesteric phase to describe some of the observed features. We calculate the elastic energy of a dislocation
away from the core, estimate the energy of the core split into disclinations of different types, study the effect
of finite sample thickness on the dislocations energy, and calculate the Peach-Koehler elastic forces that occur
when a dislocation is shifted from its equilibrium position. Balance of the dilation/compression energy in the
wedge and the energy of dislocations defines the value. @nd allows to estimate the core energy of the
dislocations. Finally, we consider the Peierls-Nabarro mechanisms hindering glide of dislocations across the
cholesteric layers. Because of the split disclination character of the core, glide is difficult as compared to climb,
especially forb=p dislocations.
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[. INTRODUCTION with a different numbeN of the director rotations byr. The
defect lattice is apparently stabilized g stresses caused
Cholesteric liquid crystal§CLCs) have a twisted ground by dihedron geometry and) strong surface anchoring at the
state with helical configuration of the director, which  plates. Subsequent polarizing-microscopy observations and
specifies the average local orientation of molecules. Externalnalysis[8—16] have established three types of lines in the
fields and surface interactions can easily deform the ideaBrandjean lattice. The line closest to the edge is a “Moebius
helicoidal configuration. When the spatial scale of distortiondisclination” with a planar director twist, separating a non-
is much larger than the cholesteric pitglicorresponding to twisted region from a region twisted by [15]. It is followed
the director twist by 2r), elastic properties of CLCs are by “thin lines” that are edge dislocations with Burgers vec-
similar to those of smectic phases with a one-dimensionalors b= p/2. Farther away, for thicknesses larger than some
periodic structurd1,2]. If a CLC is confined within a finite critical valueh., one finds “thick lines” representing edge
volume, the equilibrium structure is determined by bulk elas-dislocations withb=p. Thin and thick dislocations are split
ticity and boundary effects, such as surface tension and suinto pairs of disclinations. Geometry dictates two different
face anchoring. Very often, the boundary conditions are satways of splitting[13]: a thin lineb=p/2 splits into7 and A
isfied by the appearance of large-scale defects such as foagikclinations and a thick linb=p splits into ax\ or 77 pair
conic domains, curvature walls, dislocations, ¢8:-6]. of disclinations. The nomenclature here, introduced by Kle-
Confinement-induced distortions in cholesterics are usuman and Friedd]13], is based on the notationfor the local
ally studied in the so-called Grandjean-Cano wedges. A CLGlirectorn, x for the direction of the helical axis, ang=\
fills a dihedron with a small angle, formed, for example, by ax y. In \ disclinations, the material director field is non-
pair of mica or glass plates. As first observed by Grandjeasingular, while in7 disclinations,\ is singular andr is not.
[7], a lattice of defect lines forms parallel to the edge. TheBoth types of lines are parallel to the cholesteric layers, ex-
lines separate different Grandjean zones, the regions of ceatiept near the kinks, which change the level of the edge dis-
locations along the helicoid axj45]. Generally, at least for
the small-molecular-weight LCs, the pair representing
*Corresponding author. Email address: odl@Ici.kent.edu =p/2 dislocation isr~ >\ "2 andb=p is represented by
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N~ Y2\ 12 pair [15,16; the first symbol refers to the discli- sample, layers distortiongeatures of dislocations and asso-
nation closer to the thin end of the sample. However, thereiated kinks. Experiments are performed for well-
are also reports that the pairs might be)of¥?7"2 and  equilibrated samples and for transient textures. Using a
evenr Y272 type, see, e.g., Ref17]. The superscripts in  coarse-grained modgl,2] of CLCs, we analyze the stability
notations such as~ Y2 and\ "2 correspond to the director of thick and thin lines and their interaction with the sub-
winding number around the disclination. In terms of the Vol-strates. We calculate the far-field energy of layer distortion
terra process “” sign corresponds to adding material be- around an edge dislocation, and confinement-induced correc-
tween the lips separated by an angleand “+” sign cor-  tions to this energyin approximation of infinitely strong
responds to material removg,5,8). anchoring. These results allow one to determine the relative
Although there have been a great deal of studies on corstability of dislocations withb=p/2 and b=p, their line
fined cholesteric samples, there are still problems to exploregnergy, explain the difference in the shape of kikaich
such as the detailed core structure of split dislocations, there long when formed along thie=p/2 dislocations and
relationship betweeh, and the energy of elastic distortions short along theb=p dislocation$, analyze the Peierls-
around dislocations, the structure and elastic properties dfabarro friction energies, and to find the critical thickness
kinks along the dislocations, the role of the boundary condih. . The calculations are in good agreement with the experi-
tions in the stability and the location of dislocation lines mental data.
within the bounded sample, etc. Recent findift indicate
that when the confining plates set in-plane degenerate align-
ment, then the defect lines are not observed at all. Studies for
smectic samples with free surfaces, see, for example, the A. Materials and cell preparation

review paper by Holyst and Oswald9], demonstrate that To form a CLC, we mixed a nematic LC material

surface tension at the smectic-air interface can dramaticall%l_|2806 with a chiral dopant CB15both purchased from

mf:uenc;a t;he g?U|I||br|um IIOCS;[.'OI? of thﬁ d|zlocat|orll. tTQe EM Industries. The nematic matrix has the following prop-
value of the critical sample thicknesg, has been relate erties: dielectric anisotropyAe = —4.8, Frank elastic con-

[12] to the distancd. between two thick lines ab.=kL. _ _ .

) O stants K;=14.9 pN (splay, K,=7.9 pN (twist), Ks3
'Eh2e+r(1)u;n?£|§]§l ﬁonstant Tﬁ.s been torltglngll);]trebpor'_ted; ast =15.4 pN(bend, clearing pointTy,=101°C, and birefrin-
e , _however, this constant mig € In fac genceAn=~0.045. For the FCPM observations, the choles-

smaller,k=0.12+0.03, according to DuranfR20]; see also L ; ;
. . . teric mixture is doped with a very small amou6t01 wt %
recent estimates by Pieranski and Osw@d]. A model by of fluorescent pdye n,n’-bisBE2,5—di—tert—buty|phenyl)-

Nallet and Pros{22] establishes how the Burgers vector of . o
. X : . . - 3,4,9,10-perylenedicarboximidéBTBP), purchased from
dislocations changes with the local thicknds$n smectic Molecular Probe$27,28.

A(Sm-A) wedges. Although the cholesteric case is formally CLC samples of maximum thickness 1@6n were con-
rsr']rg('jlglr [iOZ]tTS \/S;ﬂSCtt'ﬁecarsg :rsti;gngf ?ﬁetgeraf%aerfs;'%g:%%ed between pairs of glass plates with transparent indium
’ ' prop J tin oxide (ITO) electrodes to enable application of the elec-

lattices in CLC and Sr wedges should be different, &5 tric field. The thicknesé of cells was measured by interfer-

the core structure of elementary dislocations is different, .. w4 The dihedron angleof wedge cells was mea-

engih. 1 nm n thermotropic smecics-and 1-gon i >ured using refleced laser beam for empty celt all
CLC, depending on the pish(2) surface anchoring energies EEATECEvC e (B TR ShCTes, CRECie

aﬁfhdt'ggrzrqz(ﬁgﬁggogﬁgtrgg??lgfZS_ nrcrl%yi;zés[;;fgﬂacfd _used glass substrates of thickness 0.15 mm with refractive
larger than the corresponding valueg(10™4-10" %) J/n? mdg;;r%:rzén e

for CLCs withp in the range(0.5—15) xm [24—26). gnment was set by a unidirectionally rubbed

; : (along the thickness gradient, Fig.fdolyimide PI-2555HD
An adequate experimental technique to study the prot.’l'\/licroSystem$ film spin coated over the ITO layers. The

fiirector is in the plane of the substrate with a possible small
pretilt angle =1 °. The polar anchoring coefficient,,
characterizing the work needed to deviatdrom the easy
axis in the vertical plane, is expected to be of the order of

samole in both horizontal and vertical planes. The techni 10~ 4 J/n?, as this is a typical value measured for P12555 in
pie | 12 vertical p ) IqU%ontact to a variety of nematic mixtures with a positive di-

is nondestructive, unlike the electron microscd@9,17] of ; ; R, :
. ) o electric anisotropy, see Rdf30]; azimuthal anchoring coef-
polymerized or otherwise modified samples. Although theficient is smallerW,~10"° J/n? [31].

sample in FCPM studies is stained with a fluorescent dye, the
concentration of dopant is extremely small, about 0.01%.

In this paper we employ the FCPM technique to explore
the structural properties of dislocation patterns in Grandjean- The FCPM technique links the director orientation to the
Cano cholesteric wedges. We present optical slices of thimtensity of measured fluorescent sighav,28. Compared
textures and establish the 3D director patterns correspondirtg the well-known fluorescence confocal microscopgZM),
to local (core structurg and global (location within the FCPM has two distinctive featurega) the specimen is

II. EXPERIMENTAL TECHNIQUES

ing microscopy(FCPM) [27,28. The advantage of FCPM
technique over the regular polarizing microsco®M) is
that it allows to reconstruct a three-dimensio(&) director
structure by visualizing thin1 wm) optical slices of the

B. Fluorescence confocal polarizing microscopy
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A-12)+172 -
b=p .
22 - e 0!
b=p/2 ~ . i FIG. 1. Grandjean-Cano cholestetric wedge
o] - P oo hoh, Nor2 h Np/2+b with a lattice of(_a) dlsk_)catlonsb=p/2 stable at
Toees  ssiiTn | R ; : h<h. and (b) dislocationsb=p at h>h.; (c)
wgmn s h<h - ; : , . .
7 e ) © a introduces notations used in text and shows climb
b4 | ) , | of a dislocation toward its equilibrium position in
X 2 b 8 the bisector plane.
y X
(@ () ©
stained withanisometricdye moleculegin this case, BTBP  creases whep becomes nonzero.
that follow the director orientatior(p) the excitation light is The focused beam scans the sample at a fixed depth
polarized usually linearly. —h/2=<z=<h/2, creating a “horizontal” optical slice(x,y).

The FCPM setup was assembled on the basis of Olympushe scanning is repeated at different depths, to obtain a stack
Fluoview BX-50 reflective-mode confocal microscope, Fig.of optical slices, i.e., a 3D pattetiix,y,z), related to the 3D
2. The excitation bean¥88 nm, Ar laseris focused by an  patternn(x,y,z) through the dependente- co$'3. Note that
objective into a small €1 um®) volume within the CLC  the correspondendéx,y,z) < n(x,y,z) is not unique when
slab. The fluorescent light from this volume is detected by @nly one fixed direction of linear polarizatidd is used, as
photomultiplier tube in the spectral region 510-550 nm. Athe angular parametg8 defines a cone of directions. To
pinhole discriminates against the regions above and belowvoid ambiguity, we use different directions of the linear
the selected volumg32]. The pinhole sizeD is adjusted polarizationP [e.g.,P=(P,0,0) andP=(0,P,0)] and also a
according to magnification and numerical apert(d&\) of  circularly polarized light. In the latter case, only the changes
the objective;D =100 uwm for an immersion oil 6& objec-
tive with NA=1.4. The polarizeP determines polarization
of both the excitation bearR,, and the detected fluorescent
light P;: P¢|P|P. The beam power is smaly 120 nW, to
avoid light-induced reorientation of the dye-doped [33].

For BTBP dye, the fluorescence lifetime-=(3.7—
3.9) ns[34] is smaller than the characteristic time of rota-
tional diffusion 1p~10 ns, and dye orientations during ab-
sorption and emission can be assumed to be close to each
other[28]. The FCPM signal, resulting from a sequence of
absorption and emission, strongly depends on the aggle
between the transition dipol@arallel to the local directon
in our system and P: | ~cog'B [27,28, as both absorption
and emission follow the dependency §®sThe strongest
FCPM signal corresponds ta|P (8=0), and sharply de-

Collector
Lens

Excitation Beam

Pinhole

b=p/2 b=p

PMT
‘/(///\
|
\\ \ /
N O =——
/1 = 3
Obijective Lens (b) 400um I 1.51 2

_...Light From Out
Of Focal Plane FIG. 3. Polarizing microscopy textures of unstable and stable
defects in cholesteric cellsta) a flat sample,h=10um; p
=1 um; defects in the area coated by the electrodes are removed
by an ac field(50 V); (b) a wedge samplep=5 um, a=0.45°;
FIG. 2. Setup for the fluorescence confocal polarizing micros-stable lattice ob=p/2 andb=p dislocations. A vertical cross sec-
copy. tion along the line dd is shown in Fig(d).

| Light From
Focal Plane
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FIG. 4. FCPM textures of verticat-z cross sections of Grandjean-Cano wedge with right-handed QI3 wm, strong planar
anchoring: (@) twist disclination separating ® and 17 Grandjean zonestb) b=p/2 dislocation with a core split into a ¥ "1/
disclination pair, separating/2and 37 Grandjean zonesg) the same, between 4#3and 147 zones;(d) b= p dislocation with a core split
into ax ~ Y2\ "2 disclination pair, 22- and 24r zones, the slice obtained along the bb line in Figp) 3PolarizerP is parallel to they axis.
The rubbing direction is along theaxis. Bright regions correspond |P, darker regions correspond td P or bounding glass plates.

in the vertical component, of the director are detected;,  flow during the cell filling. These defects eventually relax to
andn, are not discriminated against each other. Using comthe equilibrium planar statg||z; the relaxation is slowcan
puter software, the 3D pattet(x,y,z) can be cut by vertical take monthgs To reduce the relaxation time, we used a cho-
planes such asx(z) and (y-z) to visualizen across the lesteric LC withAe <0 so that the applied electric fiel |z
sample. facilitates the equilibrium planar stagd|z, Fig. 3@). In the

Low birefringenceAn~0.045 of the nematic host miti- Grandjean-Cano wedge with strong surface anchoring, the
gates two problems that one encounters in FCPM imaging oiefects correspond to the equilibrium state and persist even
CLCs: (2) relative defocusing of e_xtraordlnary versus ordi-\when an external field is applied, Fig(s3. The dislocation
nary modeg27] and (2) the Mauguin effectpolarization of |ineg are aligned along theaxis, their Burgers vectors are
light follows the twisted directgr[28]. To maintain both along thez axis, thus the glide plane is thez plane. Note

aﬁla}: and<rae%|al rescc)jlutl?hn V\]ﬁ'th'n 1”."’ g[vzv8e] uls;edtr:elatlvely that in order to present the experimental and theoretical re-
shallow (<60 um) depth of scannin - FUrtheérmore, ¢ ts in the most compact form, we use two Cartesian coor-

with p=5 um, the Mauguin parameteAnp/2\~0.2 is : :
small, so that light propagates in the so-called short-dmate frames, rotated with respect to each other by the angle

wavelength circular regime with almost circularly polarized “/.2 a}round they axis: *y,2) and ',y,z'), where t_he_x

eigenmode§35]; their interference produces a wave with a 2XiS 1S along the bisector of the wedge and #ieaxis is

polarization state close to that of the excitation beam, so thei!Ond the bottom plates” =x=0 at the edge.

the relationshipl ~co$'8 remains valid[28]. Finally, note

that in the FCPM images of thick{30 um) samples, the A. Equilibrated samples

registered fluorescence signal from the bottom of the cell is The whole 3D director structure can be understood by

somewhat weaker than from the top, as a result of finite |i9hbombining the regular PM textures, Figh3 and the FCPM

absorption, depolarization, and defocusing. cross sections in the vertical planez that contains the

thickness gradient direction, Fig. 4. The thin part of the

wedge contains thin dislocations parallel to thaxis and
Usually, in a flat cell, defects such as oily streaks andseparated by distancés=p/(2 tana), as measured in the

dislocations are metastable objects caused by the materi&’,y,z') frame. Forh>h., one observes a lattice of thick

IIl. EXPERIMENTAL RESULTS
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lines with a period 2. The distance between the last thin and B. Metastable structures: Kinks
the first thick line is 1.5 Fig. 3b). The corresponding ver-
tical cross sections reveal the basic features of the defec{
listed below.

(1) The first line separating® and 1w Grandjean zones

Below we describe the defect textures that are not part of
fie equilibrium defect lattice and appear only as metastable
features.

(1) Kinks along b=p/2 dislocations In the studied
. .I){vedges with a strong surface anchoring, both thin and thick
the (x-2) plane to the left of the core and twists hyaround lines are located in the bulk of the cell and never at the
the z axis in the region to the right of the core. surfaces. Moreover, thb=p/2 dislocations accumulate in

(2) The thin lines separating Grandjean zones in the thirfhe bisector plane or not farther thar2 from it. Initial fill-
part of the samplen<h,, [such as zones and 3=, Fig. N9 of the cell might formb= p/2 dislocations in other loca-
4A(b); 13w and 147, Fig. 4c)] are all separated by disloca- tions, but they relatively quickly move to the middle plane.
tions with the Burgers vectob=(0,0,1)p/2. Their core is 1he lines do not glide as the whole, but via kinks, Figs. 7 and
split into disclination pairsr~ Y2\ *2 Fig. 5b). Another 8. There are two types of kinks: kinks of heightp/4, Fig.
possible splitting, into\ =27+ 2 pairs, is observed in tran- 7, @nd kinks of height=p/2, Fig. 8. The=p/4 kinks are
sient structures when the dislocation=p/2 forms a kink, ~more frequent; they are involved in the most common sce-
i.e., a step that brings the dislocation to a differenevel, ~ nario of dislocation glide, in which one:p/4 kink moves
see point(1) in the following subsection. Predominance of 0ng the dislocation lin€along they axis) thus changing its
7 YA +12 pairs over\ ~ Y27+ 2 pairs has been explained by 2 coordinate by p/4 and transforming Y2\ 2 into
Kleman([3]: the singular core i+ Y2 line is less spread and A 7' and then a second kink propagates in the same

(3) The thick lines ath>h, are dislocations of Burgers P/2 with respect to the originat~ *? " The core struc-

vectorb=0b(0,0,1); b=p, Fig. 4d), with the core split into  tUré of £p/4 kink is intermediate between that of pure
a2 +12 pair with a continuous). Their singular coun- 7 Y2\ T2 and\ Y2712 states, Fig. 7. The:p/2 kinks can

core would carry an additional elastic energ In (pir,), ~ ine defects located at a differentevel in the sample, e.g.,
whereK is an average Frank constant ane<p is the core b=0 dislocations, as described in more detail below in point
size of the order of few molecular sizgs). (4). Such a+ p/2 kink can be stable for hours, as the glide of

(4) The critical thicknessh, of the wedge at which the defects withb+p/2 is very difficult. Figure &) reveals the
lattice of b= p/2 dislocations is replaced with=p disloca- ~ COre structure of @/2 kink in the glide plane; the core struc-
tions depends on the wedge dihedral angleExperimen- ture changes from™*2\**2into A~ 72 and then back
tally, for the studied range 5 mrath<20 mrad, k O 7 Y212 state along thg axis, Figs. &.d,e.

=ah,./p~0.08, Fig. 6, close to the Durand’s data-0.12 There are two distinct features of bothp/4 and + p/2
[20]. kinks along théb= p/2 dislocations as compared to the kinks

along b=p dislocations[see point(2) below]. First, theb
=p/2 kinks make a very small angle with tlyeaxis; their

(lx’z(deg) characteristic lengthv is thus large, about5—10p, Figs. 7
’ and 8. Second, the kinks are confined to the glide plane of
. A1z the parer_1b=p/2 dislocation, I_:ig. Eb)_. _
(2) Kinks along b=p dislocations The glide of
N~ Y2\ 12 pairs withb=p , Fig. 4d), is much more difficult
08 as compared t=p/2 dislocations; these pairs can remain
in the locations away from the bisector plane for months.
0.6

V2R The kinks alongo=p dislocations were observed only in the

specially prepared samples witleaksurface anchoringun-

04 rubbed polyisoprene coatipgand with an applied electric
field. When a voltage pulse of amplitude= V. and duration
02 ~1 sec is applied, b= p kink is generatedat the wedge of

cell or at a spaceland propagates along the edge dislocation,

p/h shifting its position by a distangetowards the middle plane.
0.05 0.1 0.15 0.2 0.25 Theb=p kinks are relatively short and depart from the glide

FIG. 6. Stability diagram of~ 2\ *¥2 and A ~¥2\, *12 pairs as plane of the parent dislocation, Figs. 9-12. . .
determined by locations of dislocations in wedge samples of differ- F'Q“_“? 9 present.s a Series of vertical FCPM slices 'taken In
ent anglex. The squares denote the last'2\ * 12 pair met as one the. vicinity of the kink, in the p-lanel-z normal .to the dislo-
moves towards the thick part of the wedge; the circles mark the firs€ation. The planes of the vertical cross sectiomsz5x-z
A~Y2, 12 pair. The solid line shows the theoretical dependenceal® Mmarked by straight lines on the optical slicg-z
a(p/h,) obtained by comparing the energies E@), (32) of the ~ (marked alscoABCD), which contains the core of a~ 12
two dislocation structures, with the following parametes;  disclination. The polarizer is along theaxis. Far from the
=0.4,C,=1, r,=6 nm,K,=7.9 pN, Kg3=15.4 pN. kink (planes k-z and 5-z), the core is a well-defined
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oP FIG. 7. FCPM textures of a kink of height4
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N "Y2\ 12 pair, The vertical cross sections 2y-4 in the In Fig. 10, the vertical optical slicesytz—9y-z are par-
vicinity of kink show a complex 3D structure in which the allel to the glide plane. The orthogonal cross sections20
director at the core region is titled rather than normal to theand 1k-z are normal to the dislocation and demonstrate than
planes X-z—4x-z. the kink shifts the dislocation bp along thez axis. The
plane -z contains thex "' disclination of the splitted
core. The slices -z—8y-z show that near the kink, the dis-

== O location deviates from the direction toward the thinner part
, ; ID/Z of the wedge, Fig. 10, thus forming a cusp first noticed by
- Bouligand[15]. Using the principles described in Sec. 11 B,

we reconstruct the 3D director field near the kink, Figs. 11
and 12, to visualize the details hidden for ordinary micros-
copy (the A "¥2 and A "2 lines are aligned on top of each
other at the center of the cusp rather than side by side, as
they normally arg

At the kink, both\ disclinations deviate from thg axis
by 7/2 and align along the& axis, each forming a cusp. The
director in the core of eack disclination remains parallel to
the disclination axis, and thus the/2 rotation of the discli-
nation also means a shift of the core oA along thez axis.
The tilt preserves the nonsingularity of director field; without

FIG. 8. FCPM textures of a kink of heiglpf2 along the dislo-
cationb=p/2; (b) vertical cross section along the glide plane; the
kink is only slightly tilted with respect to the parent dislocation, the
horizontal arrows indicate thelevels where the kink end$g)—(e) FIG. 9. FCPM textures of a kink of heiglpf2 along the dislo-
vertical cross sections perpendicular to the glide plane that showationb=p as seen in the vertical planeg-z—5x-z normal to the
how the corer™ Y2 ™12 (¢) transforms first into tha ~*27"¥2core  dislocation; the plandBCD 4y-z contains the core of ~ ' discli-
(d) and then back into the Y2 12 core (). nation.
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FIG. 10. FCPM textures of the same kink as in Fig. 9, as seen in
the vertical planes Y-z—9y-z parallel to the plan@scD 4y-z. In
the right top corner, a horizontal slicey demonstrates a cusp
associated with the kink.

tilt, A~Y2 "2 would transform into a singular™ V27 +1/2

core. At the cusp, tha Y2 disclination entering the kink
from one side transforms intoa” /2 disclination leaving the
kink on the other side, Fig. 12. The kinklat= p dislocation,
therefore, has a complex structure with a cusp and inter-
change of the. "2 and\ ~ %2 disclinations; its size is of the FIG. 11. Reconstructed director field of a kink along the dislo-
order ofp along all three coordinate axes, Fig. 12. cationb=p shown in Figs. 9 and 10, as seenyiz cross sections.

(3) Thick lines with b=p/2. The thinner part of the wedge
might contain transient structures of the total Burgers vector (4) Defects of zero Burgers vector. One often finds
b=p/2 that appear as “thick” lines in standard PM observa-ck Jines that argerpendicularto the equilibrium disloca-
tions. These configurations are in fact very different from thetjons and parallel to the thickness gradient of the wedge, Fig.
equilibrium pairsh ~ Y2\ * 2 observed in the thick part of the 14. FCPM clearly shows that these thick lines are either pairs
sample, as their core is composed of more than two discliof dislocations with opposite signs of the Burgers vector,
nations. For example, Figs. 8 and 13b) shows two close Figs. 1%a) and 15b), or symmetric oily streaks that separate
dislocations with the Burgers vectorb;=—p/2 (pair parts of the very same Grandjean zones, Figgc)1&nd
Y2\ "2 andb,=p (pair A~ Y2 "1?) respectively. This 15(d). The oily streaks ob=0 are most commonly “qua-
structure quickly(within a few hours relaxes into the equi- drupoles” composed of twa. =2 and two X *¥2 disclina-
librium single dislocatiorb=p/2 (pair 7~ Y2\ ") shown in  tions, sometimes called “Lehmann clustef$6]. Note that
Figs. 4c), 5(b), and 13e). Another example, Figs. 18 and  in nonequilibrated freshly prepared samples, the0O de-
13(f), is also a combination of the same four disclinationsfects can also run parallel to the equilibrium dislocatign (
(one N2 two N"Y?s, and one "2, topologically axis) or in some tilted direction.
equivalent to a dislocatiob=p/2. The structure relaxes to Theb=0 lines parallel to the thickness gradient can con-
an equilibrium pairr~ Y2\ *12 preserving the value=p/2,  nect eithel=p/2 dislocationgFig. 14a)], b=p lines[Fig.
Figs. 13d) and 13e) (the relaxation was accelerated by a 1 14(b)], or oneb=p/2 and oneb=p line [Fig. 14(c)]. The
sec ac voltage pulse of 15)VRestructuring usually starts at dislocationsb=p/2 andb=p deviate from they axis near
spacers or at the edge of cell and propagates along the defeébe node. Deviation ob=p dislocation causes its tilt and a
bundle. shift to a differentz level, which preserves the nonsingular
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FIG. 12. 3D director field around and at the core\of2 A *12 (b)
disclinations in the kink shown in Figs. 9—11, as seeranx-y

projection, (b) x-z projection,(c), (d) general 3D prospective.
N~ Y2\ 12 geometry of the core, similarly to the kink de-
scribed in point(2). y
In mechanical equilibrium, the sum of line tensions of
individual dislocationsT;’s at the dislocation node is zero,
2,T;=0, see, e.g., Ref6]. Thez shift is small(a fraction of %
p) as compared to the radius of curvature of the dislocation ,
so that thez components off;’s can be assumed to be much (c)

smaller than thex,y components. In this case, mechanical

equilibrium dictatesT,/Tp=2 COShy,, To/T,=2 COSe, FIG. 14. PM textures of the Grandjean-Cano wedge with defects
b=0 connecting@ b=p/2; (b) b=p; (c) oneb=p/2 and oneb
T2 Y2 R =p dislocations.
éé%%éégéé:@::fi? andTp/Tp,f COS¢y2/COSe,; the angles are defined in Fig.
gafssinstosvdueias 14. Experimentally, To/Tp,~0.7+0.2, To/Ty=1.7+0.2,
SEEE0aa008 385030009 n . . .
e and T,/T,,~0.4+0.2. The inequalityT,<T,, is directly
R related to the split core structures of the defects, as we shall
®) e el see in the following section.
A1 op i IV. ELASTICITY OF DEFECT STRUCTURES

5»% - In what follows, we construct an elastic model of defect
structures in cholesteric Grandjean-Cano wedge. We treat the

—— e CLC as a lamellar mesophase and use the Lubensky-de

() () (e) Gennes coarse-grained thedty?], in which the free energy
9909200000005, 298 é%%goﬂé’é density of layers displacements is of the form
DOORABHmocomaD
%5555555@%3%&;&&&% 1 {o2u\? 1 [ou 1/du\22
z e EREEERTLSREREeE I e &
n pin BDBBBD0IITOSREEED N2 k2] 2700z 2lax) |
b A2 T ocoooo0o000BM080 uﬁo%:o@cococn
y e—2U R LS S . .
M coosesdo ohidarad where the compression elastic moduBis K,(2/p)? and
‘g%gggggggggggggggg the curvature modulu& =3K3/8 are related to the Frank
® L R L L R X T

moduli of twist (K,) and bend K3), respectively. The two

FIG. 13. FCPM vertical cross sections and corresponding direcgonStams define an important “penetration” length

tor structures of defects with the total Burgers vedierp/2 com- = VK/B, that equals §/2m) y3K4/8K; in the Lubensky—de
posed of(a), (b) closely locatedr* 22\~ 12 and A~ Y2\ * 12 pairs; ~ Gennes model. Experimental values)in CLC with p of

(0), (d), (e) transformation of the complex core into thel? *¥2  the order of few microns are indeed close to the theoretical

pair (e) in the middle of the cell under application of the electric value A =(p/2)/3K3/8K, [37]; for our material withp
field; (f) shows the director structure {i). =5 um, this theoretical value is~0.7 um. The contribu-
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In CLCs, even the smallest value of the Burgers vedor,
=p/2, is larger than\ and the nonlinear theory is better
suited to describe the layer displacemfgit]. The nonlinear
term in Eq.(1) makes a rigorous analysis of dislocations in
CLCs difficult. Fortunately, as shown below, the energies per
unit length of edge dislocations calculated in linear and non-
linear models do not differ much for not-so-large values of
b/N (p/A=7 in the experiment and one can employ the
linear model for approximate analytical description.
Substituting Eq{(4) in Eq. (2), we calculate the free en-
ergy density for an edge dislocation in the linear model,

foum' @ P

z 2
Kb2e X /ZZAXZ (5)
e — =
e y 64mwz>\°3
. x,P,rub
MHR AR YR The energyE per unit lengthL,, of the edge dislocation in
0000000000 0000000000 alD Iame”ar phasel
o =Yo = Rem Yo mRe= N~ RPN Yo mNo mfo = Jo =K o =]
oooooog [e} gpgooooono
A TR AT - ("
00000000
COODD® 058%6 DOOOD® E= fd |dZdX— E¢+Ec, (6)
DDDEII:H:IQ& o Qonooooo ) e
@ @ D D D @ @ @ D D D
000000000007 %90000000000
(© (d) is a sum of the “far-field” energyE;; of distortions away

) ) _ from the defect cordin which the cholesteric helicoid is

FIG. 15. FCPM vertical cross sections and corresponding d'rec'strongly distortel and the core energg,. that cannot be
tor structures of defects with the total Burgers vedier0: (a.(b)  getermined within the coarse-grained model, as the scale of
two dislocations ob, = —b,=p dissociated inta. “™* A "*=pairs;  gigtortions isp. E;; can be calculated in two ways that differ
(c),(d) Lehmann cluster consisting of four disclinations. in the order of integration over andz

(@) If the integration is performed first overin the entire
range (—«,x), then integration ovez should be performed
in the range=x (&,,%), as one needs to introduce a cutoff

tion 3(au/dx)? in the compressibility term in Eq1) makes
the theory nonlinear; in linear approximation,

1 {o2u\? 1 [ou\? length&, nearz— 0 to avoid energy divergencies. The result
f(—) 2% ? s b?
=2j 353392t Ezbandm T—3;
We consider elastic properties of an isolated edge dislo- & 32\2m\%%32 8\2mENY?

cation first in an infinitely large volum¢Sec. IV A), and then Y E %)
in the spatially restricted film, in the approximation of infi- zband
nitely large surface anchorin@ec. IV B. We use these re- contains the energf, ,.,q of deformations inside an infi-
sults to analyze glide and climb of defedSec. IVQ and  pjtely Jong band of widthz|<&,. In its turn, E, ,anq can be
equilibrium Grandjean-Cano lattice of dislocatioiSec. represented as a sum of the core enegyf deformations
VD). within a rectangle |k|<é&,,|z|<¢&,), where & is some
_ o o “horizontal” cutoff length, and the energy of two bands
A. Isolated dislocation in an infinitely large sample (&x=[x|<=,|z|<&,) in which the deformations are rela-

Using the nonlinear model, Brener and Marchenko foundively weak:
the equilibrium displacement field around a straight edge dis-

location of Burgers vectob in an infinite mediun{38 11 * Kb?
g rr[ ] Ez—bandZZJ dZJ fd'|dz+ EC:—?’/2
b/an _ X & X 8V2mEN
Uni(X,2) =2\ In|1+— 1+erf] )H (3) 2
2 2\\z x| =1+ \/W—Bexp(—Z,B)Jrerf V2B |+E., (8

where erf (--) is the error function, defined as eif)(

= (217 [} exp(~vd)dv; x andz are Cartesian coordinates in where 3= &x/(4NE,).

the plane perpendicular to the dislocation centered at (0,0) . (b) With the reverse order of integration, the cutoff length
In the limit b<\, Eq. (3) reduces to the classical result of & (generallydifferentfrom &,), is introduced first along the
the linear theory39,3], X axis,

1+erf

©» Kp2 Kb?
(4) E=2f dx+ Ex-band:m +Ex-bana: (9

b
u(x,z)=—
l 4 & 8mAX?

=
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whereE, yanq IS the energy of deformations within the infi- range ofb/A=1-8, with the same cutoff parameteés
nitely long band/x|<¢,, =b/2 andB=1, the difference between the linear and non-
linear results is small, within 2% of;;; uncertainties in
core energiek. are expected to be much larger. In the ex-
periment, the largest value @f A =p/\ is about 7, so that
we can use the linear approximation for further analysis.
The experiments clearly show that the dislocation cores
are split into pairs of disclinations. The core energy of the
split dislocations is estimated3] as a sum E.(b)
(10 =g, (b)+E. of (1) the energyE4;(b) of a pair of dis-
clinations separated by distanc&,2b/2; (II) core energy
E. of the disclination lines themselves; this quantity depends
little on b, but is extremely sensitive to whether the disclina-

K b2 2 tion is singular(largeE.) or not(smallE(). As compared to
Effz—glz[ \/ — exp(—2p) +erf \/23} the A~ Y2 "2 pair, the core energy of the Y2 "2 pair
8v2mE,N B should contain an additional termK In(p/r,) that reflects

2 the singular nature of ' disclination with the core size,
| 7B
exp—28)+ Terf V2B

) (11) of the order of 1-10 molecular sizgs].
AmEN = U2y 412 pair : . . .
or ther )\1 p:;ur, integrating the typical distortion
Note that the relationship between the two forms is that ofe?jrggnedgg;%g(wr ), betweenr=r. and r=b/2
identity type and cannot be used to determine the core paf2 '
rameterB= /(4N ¢,). - p
The far-field energyE; derived above depends on two Ec.n=Epairt Ec~ 5K In(F +C4K, (13

core sizest, and &, along the two axeg andz, rather than ¢
on one as in the classic Kleman mod&l, in which the  whereC, is a number of the order of unit§, should not
far-field energy has been calculated outside a stfile differ much from the estimati, = C,K = (7/8)K suggested
<&y, —o<z<x. The two quantitiest, and £, might be by Oswald and Pieransi21] for the singular core of a nem-
related in a nontrivial way, depending anandb; their val- - atic disclination of winding number-1/2, which implies
ues cannot be established on the basis of the coarse-graingd— /8~0.4. For typical p~5 um and r.~5 nm, the

model. If one assumeg;=4\¢,, following the idea that |ogarithmic factor in Eq.(13) is relatively large, Ing/r)
perturbation of lengttd, along the layers propagates over the ~ ¢

é—' 0
Ex—bandZZJ' i dX fddZ+EC

75)( gz

b2

TAmEN

—1+exp—28)+ \/%ﬁ erf\/ﬁ

+E,.

Therefore, the far-field enerdy;s can be written in two
equivalent forms,

distances,~ &5/(4\) along thez axis, theng=1, and In the core of dislocatiorb=p split into a A =2\ "1
pair, the twist structure is distorted over the arep?, and
E 10 Kb? 13 Kb? Kb? 12 the core energy is roughly
f~ L 6—/ ~133——~5——.
8\/2#52)\32 47T§X)\ 37T§x)\ EC,)\)\:CZKI (14)

Furthermore, if &2>4N¢,, B—o, then [V2/(mB)exp  whereC, is another number of the order of unity; therefore,
(—2B)+erf \28]—1 and E;;=Kb%(8\27EN%P); if €2 one expectsE.,, to be about one order of magnitude
<4\§,, B—0, then[exp(=2B)+mBl2erf28]—1 and smaller tharE, ,, whenp~5 um andr.~5 nm.
E¢t=Kb%/(47&N). Note that the leading termEy Remember that the quantitie; ,,, E.\, and thus
=Kb?/(47&,\) in the far-field energy(11) transforms into  considered above are elastic energies per unit length of the
the result derived by Klemaf8], E¢;=Kb?/(2£,\), with a  defect butnotthe line tensions of defects. The line tension
rescaled cutoff radius 2&,— &, . defined as the ratio of the variation of elastic enedfy

The functionE;(b), formally quadratic in Eq(11), isin =Tl to the variation in its length$l, depends on the ori-
fact dependent on the model of the dislocation core. As sugentation of edge dislocation in the cholesteric matflx,
gested by Kleman3], if the dislocation core is split into a ~[E(¥)+d*E(y)/d¥*],~0, Wherey is the angular devia-
pair of disclinations, then the horizontal cutdff scales ap;  tion of dislocation from they axis (see, e.g., Ref6], Chaps.
roughly, £,~b/2; at the same timé, , being a distance along 8 and 9. If the dislocation stays in the samey plane, then
the z-axis, at which the semiwidtix of the parabolas<?  reorientation implies a change in the core structure. For ex-
— 4Nz reachesp/2, is taken as independent bf With ¢,  ample, y= /2 transforms7 Y2\ "2 into A Y2712 and
~b/2, the far-field energf;;~Kb%(3m&N)~2Kb/(3mh) N Y2 FY2 into 7~ Y2772 with a corresponding energy
is a linear function ofo; the result implies that dislocations increase that is especially pronounced in the second case.
with large Burgers vector are stable against splitting into twoEstimating the core energy increase under the transformation
or more dislocations with smalldrs. NV, 7722012 59 (/2)K In (p/2r ), one finds the

Following the same procedure with Ed4) and(3), we  core contribution to the line tension of Y2\ "2 pair
numerically calculate the differendg;=E—E. of the edge curved in the samex-y plane asE,,+ 7KIn(p/2r.)
dislocation in the framework of nonlinear theory. In the >E.,, . A curved dislocation line thus should experience a
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torque tending to deviate it from they plane, i.e., to avoid field energy caused by confinement. In the ligjith<1, the
the singularr— Y272 core. The same mechanism is respon-leading term of the confinement correction is
sible for the geometry of kinks along tle=p dislocations,

Fig. 12. K b2 5 1 2¢,
As the A Y2\ "2 dislocations preserve their core struc- Ep~-— 7 t =1\
ture upon deviations from thg-axis and shift along the 8V2mEN 22 3

axis, their actual line tension is close to the energy per unit K2
length, i.e, To=E(b=p)+E¢ \\~2Kp/(37\)+C,K or ~———
T,~3K whenC,~1. For theb= p/2 dislocation, one of the 4\277h\3?
disclinations in the core remains always singular, thus the

rough estimate of its line tension i¥,,~E(b=p/2)  The correction is significant only for relatively thin samples,
+E¢ n~Kp/(Bm\) + (7/2)K In(pldr ) + C1K~10 K with  for example E,,~ — 0.4E; for £,/h=0.1. ASE,~b?, image
the parameters specified above. Therefdfg/T,»~0.3,  forces in a strongly anchored sample facilitate splitting of
comparable to the experimental value 6@.2. dislocations into defects with a smallbr Finally, we keep
Why thenb= p/2 dislocations with a very large core en- the core energieg, the same as above; as long as the dis-
ergy appear in the thin part of sample? Qualitatively, thelocations are not very close to the boundaries, their core
reason is that inserting a slab of thicknéss p/2 into the  structures aréx independent, as confirmed by FCPM obser-
wedge requires less compression energy as compared tovations.
slab of thicknes®=p. Obviously, the difference is signifi-
cant only when the numbé¥ of layers in the wedge is small,
and gradually decreases with an increaseNofTherefore,

(16)

C. Peach and Koehler forces on edge dislocations

dislocationsb=p/2 should be replaced Hy=p dislocations Location of dislocations in a confined sample can be ana-
at h>h,. We discuss the stability df=p/2 versusb=p lyzed in terms of configurationdPeach and Koehlgforce
dislocations andh, in a greater detail in Sec. IV D. (6],

Fr=eibyoty, (17

B. Isolated dislocation in a confined sample

The bounding surfaces can dramatically change layer prowhere j;, is the Levi-Chivita tensorf is the unit vector

files and other properties of dislocations. So far, the effectlong the dislocation lineg® is the elastic stress tensor, re-

has been studied for thermotropic smectic liquid crystal andated to the layer displacements caused by stresses other than

block copolymer samples with a free surface, in which casehat of the dislocation under consideration. In the linear ap-

the relevant factor is a finite surface tensid®,40—42. If proximation, the nonvanishing stress tensor components rel-

the coefficient of surface tension is large> VKB, the dis-  evant to the 2D case=u(x,z) are

location is pushed away from the bounding surface. In

Grandjean-Cano wedges bounded by rigid glass plates, the au 2u

relevant factor is surface anchoring, which is sufficiently of=B—, o5 =-K—. (18)

strong to keep the dislocations in the bulk. The cholesteric 0z ax®

layers adjacent to the glass plates, Figs. 4, 7-10, are practi-

cally (but not exactly parallel to the substrates= *h/2, For an edge dislocation with=b(0,0,1) andt=(0,1,0),

i.e., one can assumal/dx|,— . pp=0. The layers displace-

ment around a dislocation centeredzatO can be modeled 3

by placing an infinite set of image dislocations outside the zE_ —O'EzbZBb&—u FE=0 FE=4Ep= _Kba_u
o _ . . X z 9z’ y ! z zX 3"

sample, atz=+mh, m=1,2,3...; their Burgers vectors IX

equal that of the real dislocatidn[43]. To estimate the ef- (19

fects of confinement on the dislocation energy, we consider

only the first two images closest to the substrates. In the 1. Climb

linear model, the displacement field,,«x,z) of a confined

dislocation is a superposition of displacements caused by t

defect and its images,

he L€ta dislocation be located af,, wherex’ is measured
from the end of the wedgex/, is a position of equilibrium,
Fig. 1. To simplify the notations, in this section we use the

z+mh X coordinate systemx(,z’), in which thex’ axis is directed
Ugoni(X,2)=— | 1terf| ———| |. along the bottom plate; this plate is locatedzat 0. Dislo-
4 m="t0 [z mh| 2JNz+mh| cations at equilibrium separate the regions of compression

(19  and dilation of layers. The stres$, vanishes ax’ =x}, and
at some location between two neighboring dislocations,
Proceeding as above for an unbounded dislocation, onghere the thickness of the wedgehig=Np/2; N is an in-
can calculate the energcqn¢ (per unit length of the  teger. To findk),, we calculate th® term in Eq.(2) in a part
bounded dislocationE.qni= 2f8’2dzf°fwfd,|[uconf(x,z)]dx of the wedge of length/tan«a, and heighty on the left side
=E¢;+ En+E,pang, WhereEy is the correction to the far- andhy+b on the right side:
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B fx‘/’ fxtana(&u‘)z wherem=1,2, ... . The neighboring dislocations to the
dz
h 0z

Es(Xd) =5 left and to the right can be neglected, as long as the dihedral
angle « and the cell thickness are sufficiently small so that
the parabolic regiong?<4\|z| of layers distortions around

. (200 neighboring dislocations do not overlap. In the linear ap-

proximation, the displacement field,; caused by the image

dislocations is

N/tana 0

(hy+b)/tana xtana( gyt 2
+ f dxf dz
Xé 0 Jz

Here, du~/dz=xtana/hy—1 and du™/dz=xtanal/(hy
+b)—1. The energy is minimizediFg(x;)/dx4=0, when
the dislocation is in the equilibrium position Uyi(X,2)=

” X
mzl {erf (2\/)\(mh—(—1)m5z+z))

AT

,  2hy(hy+b)  Np(Np+2b)
Xde(N)_(2hN+b)tana_2(Np+b)tana' @) —er ( - )
2N(mh+(-1)"5,—2)

. (24

The same result follows from a direct calculation of the
Peach-Koehler forceFE=—Bb(du™/dz+ u137)|x; that  The repelling forceFE(8,) = — bK(%U,i/9x%)|,— 5. x_o iS
vanishes ak;=Xg,. The distances between two neighboring then[43] ’
dislocations at equilibrium are

b2
2(N+1)%p (N+2)%p F(
T (2N+1)(2N+3)tana’ ~  (N+1)(N+3)tana
(22)

*° 52 -3/2
0,)= 8\/;}\3/2h3/2 m§=:1, { m-+ F[l_(_l)m]}

-3/2
_ m—§[1—<—1)m]} ] (25)
for b=p/2 andb=p types, respectively; hend refers to the h
number of cholesteric layers'2 to the left of the dislocation
located in the thinner part of the wedge. The separation is ?
weak function ofN; it quickly approache®/tana whenN '™
—oo; even forN as small as 5, the relative difference be-
tweenb/tana and the exact separating distances in @68)

The force vanishes fob,=0. When the displacements
m the middle plane are smali,<h, series expansion and
summation on the right hand part of the last equation yield a
simple formula for the force,

are negligible, less than 2%. In the well-equilibrated
samples, dislocations are indeed close to their locations FE(5,)~— 3(8— \/E)g(ﬁ) Kb? §+O §
specified by Eq(21) with separations as in E¢22). 2t 4 2/8\m\3¥2n32 h h3

A dislocation slightly shifted from its equilibrium position
along thex’ axis, by 8,=x}—Xje, |y <b/2a, experiences _ 0.4Kb? 5, 26
a restoring force FE(68,)=— ot b=—dEg(Xjet 6,)/ 35y T \3¥232 h’ (26)

with the direction opposite to the direction éf,
wheres(- - -) is the Riemann zeta function, and stress,
Bbs,tana 2hy+b

E ~—
= T S hy )

23 0.47%b 4,

O-ZEX(‘SZ)%)\?‘/Z—WF- (27)
this force causes dislocation to climbing backxo=x/,.

Note here that climb parallel to the layers is _easier than indeI-he forceFE(3,) is always directed to drive the dislocation
across the layers, as it preserves the essential geometry of t{b oz

core and is associated with twist deformations near the cor > the midplane of a strongly-anchored wedge; this force
X uickly decreases when the thickness of the slab increases,

Because the stresses imposed by the wedge geometry —h-52

thickness dependent and small, and because real-time FC )

experiments at this stage are difficult, we leave the discus- Weftrec?ll n(éw that :‘n thet;‘\x%?”mfanp d'SI(ﬁg'O/gs
sion of the mobility of dislocations to a future study. are otten found away from the biSector plane, winiep .
dislocations are close to it. The apparent discrepancy with

2 Glide the model prediction?-‘f(52)~b2 is explained by the fact

) ) o ) that glide of dislocations is hindered by periodic structure of
Consider now a case when the dislocation is shifted alonghe cholesteric.

the verticalz_axis fromz=0 to some&_ﬁéo. Here we return In solid-state physics, the phenomenon is known as the
to the coordinate system with theaxis along the midplane  peieris-Nabarro friction[44,45. As the dislocation glides

of the wedge. Because of the boundary conditions,cross the crystal lattice, the core structure changes periodi-
Juldx|,— +n2=0, the dislocation is repelled by the boundary cajly: atomic reconstructions lead to periodic changes of the
towardsé the m|dé)Iane. The corresponding Peach-Koehlgsotential energy of the crystal. The applied stress needed to
force 7 (z4) =boz,,- 5, can be calculated by placing image overcome the energy barriers is called the Peierls-Nabarro
dislocations of the same Burgers vedbaat both sides of the stress. This stress is determined by the core structure and
slab, z=—-mh+(-1)"5, and z=mh+(—1)"§, [43], thus cannot be given a universal analytical expression. The
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1/2 +1/2 -1/2 +1/2 +1/2 far-field energy can be assumed constant. As discussed
A - ) above, the core energy of Y2\ +172 pair i i
FTc0cndRoolons FOS 0203 gy of the A pair is relatively
EA 5. %0 5 a5 R 5is 28 %oo%g%éﬂ;gé’ small, E.,,=C,K~K, Eg. (14). The transformation
°§O°§°°Z<>(;o°° R 0"%(: :20020 00000§530080°i0 NV FTV2, 2722412 implies a large increase in the core
Dofowf[®c ogllecp”u energy, of the order ofER\~E. ,,—E.\n~KIn(p/r,)
>E.\\. In contrast, the minimum core energy of
E(b=p)+E _ “ the 7 Y22  pair is already  large, E.n
~(7/2)K In(p/4r )+ C41K, according to Eq(13), see Fig.
£ 16. The qltt_arnatiy&‘”%* vz core apparently corresponds to
E(b=p/2J+E .. a local minimum in the potential energy as one does observe
o %/*’m \¥ 72 kinks that transformz~ Y2\ "2 into A~ 27712 and back,
E(b=pI2+E _, - . il \ £ Fig. 7. The transformation-*l’z)ﬁ1’2—/>2)C1’27-“’2 impligs
12 412 an increase in the core energy BN~ (/2)K In(r/rl)
E(o=p)+E . | A g A +(_Ci—C1)K~cK, where p_rlmed values_correspond to the
' > pair A~ Y2772 the numerical constart is most probably
0 p/4 o/ less than 1(an estimate is given at the end of this section
B8igd [oshsy Y The excess free energy as the function of dislocation dis-
3“5:0000 K2 o°§’°§§u"c 0000000500 placement, along the helix axis can be written phenomeno-
B D g né g bomng gboné logically as
-1/2,4+1/2 -1/2 +1/2 -1/2 ,4+1/2
T oA AR Epn ( 47Tb5) 218,
. . . _ . AE(62)~— 1—-cos—
FIG. 16. Potential energies of straight dislocatidmsp/2 and 2 p b
dislocationb=p with the split cores as the functions of their posi- (29)

tion aling thez axis; see text. o ) )
similarly to the phenomenological model for solid crystals

original Peierls-Nabarro model assumes a sinusoidal forcE#4.49; Epy is the Peierls-Nabarro energy, Fig. 16. Note that
between the atomic planes on the two sides of the slip plan&ve approximate the two-minima potential for the'/2\ *1/2
Lejcek [46] has applied the model to edge dislocations inPair with a single-minimum cosinusoidal function, shown by
Sm-A and calculated the Peierls-Nabarro stress that reads i thin line in Fig. 16. The corresponding stress
our notations as

1 GAE(5,/b)  2mEpy (47752)

3JmKb 2mE, b2 a(5,/b)  pb p
4\32¢12 S (28)
z

OpNL™
has the amplitudepycore=27mEpn/(pb), or, when written

It is easy to see that the ratio for the two types of dislocations separately,

OPNL 3\ h®2 2K In(R

E 72 2mcK
Tzx ZeXF(Zﬂ'fz/b) bé 52 0'FI%N(:ore%TC- FF)>/l%lcore pb : (30

can be of the order of 1 with estimatés=65,=¢,=p, \ s 1 ) )

=0.2p, h=10p. The ratioopy, /o, decreases when de-  FOr the A="5\ pair, with b=45,=p, =02,

creases, which, in principle, might explain the fact that N=10p,p~5 um, andr.~5 nm, one findsoz/oBycore

= p/2 dislocations in the thin part of the sample are located~4x 1(P; therefore, the model predicts that Y2\ * 2 pair

near the bisector plane, while the= p lines in the thick part cannot glide as a straight line. For the 2\ *1/2 pair with

are found at different levels. Note, however, that the steep b= 6,=p/2, A=0.2p, h=10p, one fmdszrlecrchore 4

dependence ofpy On the model core parametéy makes X 1050 unlessc is anomalously smallas estimated below,

the estimates rough. Moreover, the mo@28) refers to a is of the order of 10?), the Peierls-Nabarro barrier is too

dislocation that is not split into a pair of disclinations. Below, high to allow the dislocatioth=p/2 to glide as well.

we discuss the Peierls-Nabarro stress for the split dislocation The considerations above are in a good agreement with

and show that the dependence of the split core energy on tithe experimental data. We have never observed glide of dis-

position along the helix axis might lead to Peierls-Nabarrolocations as a whole. Instead, the changezinoordinate

stresses higher thanpy, occurs via kinks. The kinks have completely different struc-
When an edge dislocation with a split core moves as aure for the case ob=p/2 andb=p dislocations, as pre-

whole in z direction, the structure of the two disclinations sented in the experimental part and discussed below.

changes periodically. Upon a shift by/4, the pair The kinks that occur along the=p/2 dislocations are

N~ Y2\ 12 transforms intor~ Y277 Y2 and the pairr Y2\ "2 usually of heightp/4 or p/2 each, Figs. 7 and 8. The length

transforms into\ ~¥27* %2, Fig. 16. The main contribution to  of the kink, measured along theaxis, is largew~ (5-10

the energy changes comes from the energy of the cores; the i.e., the angles between the kink and thgaxis is small.
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This experimental feature indicates that the Peierls-Nabarroation is significant only within the parabol&=4\|z|. In
energy barrier is relatively small as compared to the linehe wedge of small angle, the dislocations are separated by
tension of the dislocation itself. Imagine a dislocation con-distanced >2/4\h and practically do not interact. There-
necting two points in the bulk of the sampl&(x,,z,) and  fore, the free energy per unit length jndirection can be
B(xg,zg). The smaller the Peierls-Nabarro energy as comrepresented as a suBi=Eg+F¢;+E;+Ecore, WhereEg
pared to the line energy of the dislocation, the smalleg:is is the B term energy of the typ&20), E¢; is the far-field
in the limiting caseEpy/E— 0, the kink is infinitely long, as  energy due to the strain field inside the parabdBeE,, is
the dislocation simply tilts as a whole and preserves the fornthe correction to the far-field energy that accounts for con-
of a straight line to minimize its length finement effectq16), and E.,,. is the core energyl4) or
V(Xg—Xa)*+(zg—2a)*. When the Peierls-Nabarro energy (13). The defects are in their equilibrium positiorg,(N),
associated with the kink is larger than the line tension, therkq. (21), in the bisector planex’ axis is along the bottom
¥ is large and the kink tends to be short; in the limit plate. We compare the energies of the two types of lattices:
Epn/E—, the kink is vertical, of the lengthzg—z,|, it one withb=p/2 and one withb=p. Calculations are per-
connects two horizontal dislocation segments of total lengtiformed for a trapezium of length/tana and heighthy on
|Xg—Xa)- the left side andhy+p on the right side. The trapezium
For small¢, one can directly apply the kink model de- contains either two dislocations with=p/2 or one withb
veloped for solid crystalf44,45, in which ¢ is determined =p.
by the (constank line tension of the edge dislocatidg,, The B term is calculated using the symmetry of the stress
~E; »~(m2)KIn(p/4r;), Eq. (13), and the Peierls- oF, that vanishes ax’ =x}(N) and at any location of the
Nabarro energyEB’ﬁch, as = \/ZEB;NZ/E,),Z. As ¢  type hy=Np/2 between dislocations. For the lattice com-

=p/(4w) for the p/4 kink, one obtains posed ofb=p dislocations,
P [Epp P [m P EP_B/2 fxée(N,b:p)d J’Xtana )
~. ~al D = X Xtana/hy—1)“dz
W=z @5 4 N 4c In4rc' 5 hy /tana 0 ( v
. . _ ~ i (hytp)/tana X tana
Using the estimateg~5 um andr.~5 nm, and the experi +f N dxf (xtana/hy+ p—1)2dz
mental resultw~ (5-10p, one obtainc~ (0.3-1)x 10 “. X o(N,b=p) 0
In other words, the core energy variation for the'/2\ /2
pair along the kink is only a small fraction of the Frank B Bp? 2N2+4N+1
elastic constank, which is a reasonable conclusion as the 24 tana [1+N]?
b=p/2 dislocation can never get rid of the singular core.
In contrast, for a kink along thé&=p dislocation, the Bp? (1 1
N~ Y2\ Y2 pair simply twists with the local cholesteric di- ~ e\ N~ N2 (31
rector to preserve the nonsingular core, Fig. 12; the energy @ N

density of the kink is of the order ok and is not very
different from the line tensioE,~K of the dislocation it-  In a similar way, for theb= p/2 dislocations,
self; therefore, the kinks are expected to be shert,p, as
in the experiments.

Note also that the total elastic energyof the kinks in ~ EB°=B/2
cholesterics with a micron-scale pitch is expected to be much
larger than the thermal energkgT~4x10 2! J at room
temperaturg which makes their thermal nucleation unlikely; J
the situation is thus different from the typical Sinmateri-
als, in which the kinks are mostly of molecular height. For (hy+p)/tana X tana
the kinks along the cholesteriz=p dislocation, the discus- +f de
sion above leads toU,~(K/p?)p3~pK~5x10"1" J.
For the “long” kinks along theb=p/2 dislocation, the en-
ergy is Upp~Eppb?/w, ie., Uy~ (m/2)Kp?In(p/arc)/

’ _ X tana
fxde‘“"b p’2’o|xf (xtana/hy—1)2dz
0

hy /tana

(o(N+1b=p/2 xtana
XaeNTLD=P ’de (xtana/hy+ p/2—1)2dz
Xjo(N,b=p/2) 0

(xtanahy+p—1)2dz

Xgeo(N+1b=p/2) 0

Bp? 32N°+ 160N*+300N3+ 260N2+ 99N+ 11

(4w)~10"17J. The observed kinks can be introduced dur- ~ 24tana [4N2+8N+3]°
ing the filling of the samples and by mechanical inhomoge- 5
neities, including the edges of the cholesteric sample. Bp 1 1
~e——| —— (32
48tana\ N N2

D. Lattice of dislocation in an equilibrated confined sample:

Critical thickness The far-field energy of dislocation witl§,=b/2 is Ey

We follow the approach of Nallet and Prg&2], in which ~ ~2Kb/(3w\), Eq. (12); the confinement correction is
the energy of the wedge is represented as the sum of threughly Ep~—Kb?/(4y27h\%?) ~ —Kb?/(4/7Npr®?),
independent compression/dilation enefgy and the energy Eq. (16); and the core energies are specified eitheEas,
of dislocations. The strain field due to the presence of dislo=(7/2)K In(p/4r;) + C;K, Eq. (13) or asE.,,=C,K, Eq.
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(14), depending on the dislocation type. Therefore, the totaplaced by a lattice ob=p dislocations. Metastable struc-
elastic energies of the two structures are tures are also observed, such as apparent “thick” lines of
total Burgers vectorb=p/2 split into four disclinations
L N Y2\ 2,412\ ~12 and dislocations of zero Burgers vec-
37N 8 mN\3? tor, commonly composed of twe~ " and twoX "2 discli-
nations. Kinks are different fob=p/2 andb=p disloca-
tions. In theb=p/2 case, the kink is only slightly tiled with
respect to the dislocation; it is confined to the glide plane and
is relatively long,w~(5-10 p, as the core energy per unit
1 1 ) 2p p¥? length of 7~ Y2\ "2 pair is large as compared to the Peierls-

—— — |+ — +C,. Nabarro barrier associated with modifications of the
N N2/ 37N 4JzNA32 2 FoU2) +172

2 3/2

1 1

Boo P

K 48\?tana

+aln

ar. +2Cq, (33

E, p?

K 122 %tana

core into ax ~ Y2772 core. In theb=p case, the

kinks are shortw~ p; both \ disclinations deviate from the
The leading contributions are produced by Beerms glide plane, to preserve a nonsingula_r director structure.
(31),(32), and the core energigd3),(14). Comparing these Thermal nucleation of kinks in cholesteric samples vgtim

two, see also Fig. 6, one finds the critical number of cholesth® micron range is unlikely; kinks can be introduced by
teric half layersN, and the thicknesé, of the cell above mechanical irregularities and during the filling of the sample.

which the lattice is composed bf=p dislocations, Kinks are responsible for glide of dislocations that never
glide as straight lines. In contrast, climb occurs easily; dis-
1 p\2 locations in equilibrium are separated by well-defined dis-
aNg~ 0 ( ) or tances along the bisector.
16[”'”(? +201—C2} We employed the coarse-grained linear elastic model of
Cc

cholesteric phase to calculat® the energy of layer distor-
h 1 5 tions around the dislocations, which is valid for other cases,
e _ ( p) (35) such as SmA; (b) corrections to the energy caused by finite
p 32[ - In(i thickness of the samplég) Peach-Koehler forces acting on a
ar, dislocation shifted from its equilibrium positiongd) the
Peierls-Nabarro friction associated with the split core of the
For the material under study, Frank constants of bend angholesteric dislocationgg) the critical thickness,. Com-
twist areK3=15.4 pN andK,=7.9 pN, respectively, so that parison with the experimental data shows that the model of
N p=(1/27)3K4/8K,~0.14. Furthermore, experimen- dislocation core split into a pair of disclination is adequate to
tally, k=ah./p=0.08. Therefore, Eq. (35 predicts describe the observed properties of defects.
mIn(p/dr;) +2C,—C,~21. The latter estimate is in a good  Note finally that the features of dislocations described in
agreement with the energies expected by the model of ththis paper are specific for strong planar surface anchoring of
split dislocation core. Really, according to this model, Eq.the director at the bounding plates; under weak anchoring,
(13) and Eq.(14), for typical p~5 pum andr.~5 nm, and the dislocation structures and behavior are completely differ-
for the expected C;~0.4 and C,~1, one obtains ent; in particular, dislocations are always of a nonsingular
In(pldr ) +2C,—C,~17, close to the value 21 deduced core and can be pushed away from the sarfysi@.
from Eq. (35).

+2C,—C,

ACKNOWLEDGMENTS

The work was supported by NSF STC ALCOM, Grant
We visualized the 3D director patterns associated witiNo. DMR89-20147, by donors of the Petroleum Research
defects in cholesteric Grandjean-Cano wedges with strongund, administered by the ACS, Grant No. 35306-AC7, and
surface anchoring. The FCPM technique allows to establispartially by NSF U.S.-France Cooperative Scientific Pro-
the fine details of the dislocation structures. The dislocatiorgram, Grant No. INT-9726802; the latter made possible fruit-
of Burgers vectorb=p/2 (the “thin line”) splits into  ful discussions with M. Kleman. We thank Y. Bouligand, I.
7~ Y2\ 12 disclination pair; whileb=p (the “thick” line)  Dozov, T. Ishikawa, N. Madhusudana, Ph. Martinot-Lagarde,
splits into ax~Y2\ "2 pair. In equilibrium, a lattice of and S. Shiyanovskii for discussions and G. Durand for
b=p/2 dislocations is stable dt<h.. At h>h, it is re- Ref.[20].

V. CONCLUSIONS

[1] P. G. de Gennes and J. Proshe Physics of Liquid Crystals 1983.
(Clarendon Press, Oxford, 1993 [4] M. Kleman, Rep. Prog. Phy&2, 555 (1989.
[2] T. C. Lubensky, Phys. Rev. 8, 452(1972. [5] O. D. Lavrentovich and M. Kleman, iChirality in Liquid
[3] M. Kleman, Points, Lines and Walls in Liquid Crystals, Mag- Crystals edited by C. Bahr and H. Kitzeroy$pringer-Verlag,
netic Systems and Various Ordered Meidiley, Chichester, New York, 2002.

051703-15



I. 1. SMALYUKH AND O. D. LAVRENTOVICH

[6] M. Kleman and O. D. Lavrentovict§oft Matter Physics: An
Introduction (Springer-Verlag, New York, 2002

[7] F. Grandjean, C.R. Hebd. Seances Acad. $¢2 71 (192J).

[8] G. Friedel, Ann. Phys18, 273(1922.

[9] R. Cano, Bull. Soc. Fr. Mineral. Cristallog®0, 333 (1967).

[10] R. Cano, Bull. Soc. Fr. Mineral. Cristallogdl, 20 (1968.

[11] P. G. de Gennes, C. R. Seances Acad. Sci., S&6® 571
(1968.

[12] Orsay Liquid Crystal Group, Phys. Le28A, 687 (1969.

[13] M. Kleman and J. Friedel, J. Phys. Coll&f, C4-43(1969.

[14] T. J. Scheffer, Phys. Rev. B, 1327(1972.

[15] Y. Bouligand, J. Phys(France 35, 959 (1974).

[16] G. Malet and J. C. Martin, J. Phy40, 355 (1979.

[17] S. Masuda, T. Nose, and S. Sato, Lig. Cra, 577 (1996.

[18] D. N. Stoenescu, H. T. Nguyen, P. Barois, L. Navailles, M.
Nobili, Ph. Martinot-Lagarde, and I. Dozov, Mol. Cryst. Liq.
Cryst. 358 275 (2002.

[19] R. Holyst and P. Oswald, Int. J. Mod. Phys9B1515(1995.

[20] G. Durand(private communication

[21] P. Oswald and P. PieransKies Cristaux Liquides, Tome 1
(Gordon and Breach Science Publishers, Paris, RG0(522.

[22] F. Nalet and J. Prost, Europhys. Lett.307 (1987).

[23] Z. Li and O. D. Lavrentovich, Phys. Rev. Le#t3, 280(1994).

[24] O. D. Lavrentovich and D.-K. Yang, Phys. Rev.5%, R6269
(1998.

[25] T. Ishikawa and O. D. Lavrentovich, Phys. Rev. &3,
030501R) (2001.

[26] T. Ishikawa and O. D. Lavrentovich, iDefects in Liquid Crys-
tals: Computer Simulations, Theory and Experimekts. 43
of NATO Advanced Study Institute, Series Il: Mathematics
Physics, and Chemistryedited by O. D. Lavrentovich, P.
Pasini, G. Zannoni, and S.urher (Kluwer Academic Publish-
ers, Dordrecht, 2001

[27] I. I. Smalyukh, S. V. Shiyanovskii, and O. D. Lavrentovich,

PHYSICAL REVIEW E 66, 051703 (2002

Chem. Phys. Lett336, 88 (2002.

[28] S. V. Shiyanovskii, I. I. Smalyukh, and O. D. Lavrentovich, in
Defects in Liquid Crystals: Computer Simulations, Theory and
ExperimentsVol. 43 of NATO Advanced Study Institute, Series
Il: Mathematics, Physics, and Chemistiigef. [26]).

[29] I. Heynederickx, D. J. Broer, and Y. Tervoort-Engelen, Lig.
Cryst. 15, 745(1993.

[30] Yu. A. Nastishin, R. D. Polak, S. V. Shiyanovskii, V. H. Bod-
nar, and O. D. Lavrentovich, J. Appl. Phy&6, 4199(1999.

[31] F. Z. Yang, H. F. Cheng, H. J. Gao, and J. R. Sambles, J. Opt.
Soc. Am. B18, 994 (2002.

[32] See, e.g., R. H. Webb, Rep. Prog. PH§8,. 427 (1996.

[33] I. Janossy, Phys. Rev. 49, 2957 (1994).

[34] W. E. Ford and P. V. Kamat, J. Phys. Chedi, 6373(1987).

[35] P. Yeh and C. GuQptics of Liquid Crystal Display$Wiley,
New York, 1999.

[36] B. A. Wood and E. L. Thomas, Natur@.ondon 324, 655
(1986; S. D. Hudson and E. L. Thomas, Phys. Revi4\8128
(1991.

[37] T. Ishikawa and O. D. Lavrentovich, Phys. Rev6g, R5037
(1999.

[38] E. A. Brener and V. I. Marchenko, Phys. Rev.58, R4752
(1999.

[39] P. G. de Gennes, C. R. Seances Acad. Sci., S&7% 939
(1972.

[40] L. Lejcek and P. Oswald, J. Phys.1) 931(1991).

[41] M. S. Turner, M. Maaloum, D. Ausserre, J.-F. Joanny, and M.
Kunz, J. Phys. 14, 689(1994.

[42] R. Holyst and P. Oswald, J. Phys.3] 1525(1995.

[43] P. S. Pershan, J. Appl. Phy&5, 1590(1974).

[44] J. Frieldel,Dislocations(Pergamon Press, New York, 1964

[45] J. P. Hirth and J. LotheTheory of DislocationgWiley, New
York, 1982.

[46] L. Lejcek, Czech. J. Phys., Sect.32, 767 (1982.

[47] 1. 1. Smalyukh and O. D. Lavrentovictunpublishegl

051703-16



