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Topological point defects in nematic liquid crystals
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Point defects in nematics, also called hedgehogs, are topological entities that have
no equivalent in ordered atomic solids, despite the homonymy. They have been
the subject of intense experimental and, above all, theoretical (analytical
and computational) investigations in the last thirty years. They are present
in bulk specimens and at the specimen boundaries. This review article stresses
the importance of the core structure of the defect, the possibility of it splitting into
a disclination loop, and boundary conditions, as well as taking stock of the recent
advances on point defects in nematic colloidal suspensions. An important topic
is the formation of strings between opposite hedgehogs (radial and hyperbolic),
and their role in the dynamic properties of nematics.

1. Introduction

A nematic liquid crystal is an anisotropic fluid formed by rod-like or disk-like
molecules that tend to be parallel to a common direction, the director, denoted n

(n2¼ 1). The directions n and �n are physically equivalent: n��n. There is no
long-range translational order in the system and thus nematics are fluid and very
sensitive to an external field, which explains why they became a key technological
material in applications such as informational displays. Nematic liquid crystals
are in the focus of intensive interdisciplinary studies also because they represent
a well-defined soft matter system with a rich variety of supramolecular structures,
most notably those corresponding to the so-called topological defects. A topological
defect is a configuration of the order parameter that cannot be transformed
continuously into a uniform state. They can occur during symmetry-breaking phase
transitions, under an external field, or simply be a necessary element of an
equilibrium state. For example, in a sufficiently large spherical nematic droplet
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with perpendicular alignment of molecules at the surface, the director field forms
a radial-like configuration with a point defect at the centre, in order to reach
an equilibrium state. This point defect in the director configuration is of a completely
different nature compared to point defects, such as vacancies and interstitials,
in solid crystals [1]; its topological nature means that the distortions of the order
parameter around the ‘‘point’’ extend throughout the entire system.

The singular points of a vector field (cols, nœuds, foyers, etc.) were classified
by Poincaré [2], by using the tools of the theory of ordinary differential equations;
Nabarro [3] was the first to notice that Poincaré’s method can be applied, with
the purpose of classifying point defects, to spins in a ferromagnet and directors
in a nematic insofar as the sample does not show circuits along which n is reversed.

The topological classification of defects, on the other hand, relies on the
topological properties of the order parameter space. It does not give a classification
as detailed as the vector field one, but its principles can be extended to any ordered
medium and to defects of any dimensionality [4, 5]. The scalar order parameter,
S(T ), of a uniaxial nematic is the thermal mean, ½ < ð3 cos2 � � 1Þ>, of the
orientation of the molecules about the director. More precisely, the order parameter
(OP) is a traceless tensor, Qij ¼ SðTÞðninj �

1
3 �ijÞ. The OP space is the space of all the

realizations of the OP. In the case of a uniaxial nematic, a sphere of unit radius
represents adequately all the directions of n; the OP space is therefore a half sphere,
namely the projective plane, denoted P2 (see Hilbert and Cohn-Vossen [6]).
Topological defects of various dimensionalities, d, in ordered media are classified
by the homotopy groups �n(V), n¼D – d – 1, where D is the space dimension; in
a 3D nematic, V¼P2, n¼ 1 stands for line defects (disclinations), n¼ 2 for point
defects. The topological charge (an invariant) carried by a point defect can be
calculated by the relation [7]

4�N ¼

ðð
"ijk"pqrnq, jnr,knpdSi ð1Þ

where the integration is performed on a sphere-like surface surrounding the singular
point. N is an integer; �2(V)¼Z. Point defects (N¼�1), the only ones ever observed
experimentally, are called hedgehogs. As equation (1) is odd in the director
components and n��n, the same point defect can be assigned opposite charges:
also, the charge can be drawn opposite by a circumnavigation of the point defect
around a disclination line of strength k ¼ �½ (about which the director changes
sign) [8]. It is usual to assign the value N¼þ1 to a radial hedgehog and N¼�1 to a
hyperbolic hedgehog (see figure 1). Nabarro [9] was probably the first to show a keen
interest in the topology of defects in a nematic by noticing that the Euler–Poincaré
characteristic of a sphere [5] measures the total strength of the disclinations piercing
the boundary of a nematic droplet, if the boundary conditions are such that the
director is everywhere parallel to the droplet surface (�iki ¼ 2).

The free energy density associated with the changes of the tensor order
parameter in the vicinity of the nematic–isotropic phase transition is of the
Landau–De Gennes form:

fLdG ¼
1

2
aðT, pÞtrQ2 �

1

3
btrQ3 þ

1

4
cðtrQ2Þ

2: ð2Þ
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When the scalar order parameter does not change much, which is true for director

deformations over the scales much larger than the molecular size, then the free

energy density of the elastic director distortion is written as the Frank–Oseen

expression

fFr ¼
1

2
K1ðdivnÞ

2
þ
1

2
K2ðn� curlnÞ2 þ

1

2
K3ðn� curlnÞ2 �K24div ðndiv nþ n� curl nÞ

ð3Þ

with Frank elastic constants of splay (K1), twist (K2), bend (K3), and

saddle-splay (K24).
Melzer and Nabarro [10, 11] also made very early observations of hedgehogs

in capillaries. In fact, there have been very few detailed experimental investigations

of hedgehogs in the course of time since their appearance in the realm of nematics

compared to the flourish of theoretical studies, the latter encouraged by the

development of computer methods. On the other hand, theory and experiment seem

to go hand in hand for point defects in colloidal suspensions in nematics, where an

air bubble (which acts as a positive N¼þ1 point defect) or a droplet or a particle

that compensate a negative N¼�1 point defect in their vicinity [12], can form

a stable dipole.
This paper presents a brief review of bulk point defects (hedgehogs) and surface

singular points, often called boojums (the name is due to Lewis Carroll and has

been adopted frenetically by the superfluid and liquid crystal communities thanks

to Mermin).

Figure 1. Capillary tube with homeotropic, i.e. normal, boundary conditions: meridian
section. The director is in the meridian plane. Point defects N¼þ1 (radial hedgehog) and
N¼�1 (hyperbolic hedgehog).
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2. Bulk and surface singular points

2.1. Static observations

Defects usually appear in the bulk of a sample by symmetry breaking, at the
isotropic–nematic transition, TIN, either by a thermal quench or a slow transition;
pressure quench has also been employed. One expects to obtain in this way a random
array of defects of various dimensionalities: point defects, disclination lines, and
configurations or solitons (non-singular topological defects) [4]. The final defect
distribution depends on the time of annealing and on the boundary conditions,
i.e. on the anchoring conditions at the boundaries of the sample, like those
induced by a physical or chemical surface treatment; this forces the orientation
of the molecule.

We are interested in point defects. A remarkable experimental result is that their
occurrence in the bulk just after quench (independently of the boundary conditions)
is a rather rare, if ever observed, event [13]. An interesting (and subtle) explanation
has been given of this phenomenon [14]. The topological charge, N of equation (1),
measures twice the number of times that P2 is covered by the order parameter
(the director); this is a rather difficult geometric requirement to be obeyed by the
correlated nematic domains which appear randomly about some point of the sample
at the transition. The probability of this event can be calculated [14]. The idea follows
the lines of the celebrated Kibble mechanism for the generation of cosmic strings
(considered as singularity lines) in the early universe [15], which has inspired
laboratory experiments on liquid crystals (see, for example, Chuang et al. [16]).

Hedgehogs are thus observed in special geometries with specific anchoring
conditions, namely in capillaries [10, 11, 17–20], in nematic droplets [21] and
in confined parallel samples with hybrid boundary conditions [22, 23]. Our references
are not exhaustive. On the other hand, hedgehogs are the rule rather than the
exception, in nematic colloidal suspensions (see next section), but this also proceeds
from the special anchoring conditions met in such systems.

In capillaries with homeotropic anchoring, the molecules normal to the
boundaries force a radial geometry, as pictured in figure 1; one observes that the
director ‘escapes along the 3rd dimension’, i.e. the axis of the capillary, as aptly
worded by Meyer [24]. The k¼þ1 disclination forced by the boundary conditions
is therefore continuous along its core (or, differently stated, coreless). Observe that
the escape is either up or down, with equal probabilities if the normal anchoring
is perfect. Thus two types of point defects do appear, of opposite charges N¼�1.
The director configuration can be investigated experimentally by polarized
light microscopy; the resulting observations satisfy the expected geometry, at least
qualitatively; this experimental method does not allow a large resolution. Therefore
the role played by the anisotropy of the elastic moduli, K1, K2, and K3, in the director
configuration around the hedgehogs [24, 25] has not yet been satisfactorily tested.

This same anisotropy is also responsible for the configuration of the director
about k¼þ1 disclination lines, and also about k¼�1 lines (see Anisimov
and Dzyaloshinskii [26]). Disclination lines can be observed end-on in well-
annealed nematic samples formed between two flat glass plates (Schlieren textures,
see figure 2). Topology requires that the sum total of the disclination charges
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vanishes, �iki ¼ 0. One observes k¼�½ and k¼�1 lines. In most experimental
cases, in particular SMLCs (small molecule liquid crystals), the escaped geometry
is stable with respect to planar singular, i.e. k¼�1 line geometries, and point defects
are present; the situation is more involved in main chain PLCs (polymer liquid
crystals) where usually the splay modulus is so large that the escape can be absent in
a radial geometry [27]. Thus, apart from a few exceptions, there is ample evidence
that the integer lines are coreless and carry point defects, often located outside the
sample. Monte Carlo calculations have confirmed these results [28].

The topology of a droplet with homeotropic anchoring is compatible with
a radial hedgehog, but its actual presence depends on the anchoring energy, �W�2

(which measures the excess surface energy necessary to turn the director away from
the normal direction by an angle �;W is called the surface anchoring coefficient), and
the droplet size, R. Compare the surface energy, which scales as WR2 for a uniform
director, and the bulk energy, which scales as (K/R2)R3

¼KR for a radial hedgehog;
it is easy to convince oneself that in a droplet of radius R smaller than approximately
Rc¼K/W the director is uniform, whereas a larger droplet contains a radial
hedgehog [4].

In a droplet with planar (degenerate) anchoring, the director field should
obey the Euler–Poincaré theorem [6, 9] and, accordingly, must suffer either two
singularities with k¼ 1 or one singularity with k¼ 2. The first case (two k¼ 1
singularities) is often met when a nematic droplet is suspended in an isotropic fluid
such as glycerol, say [21, 29]; the second one being more specific of biaxial nematics
(for the existence of which there appears to be new experimental evidence [30, 31]).
Note that in both cases the point defects are essentially surface defects that cannot
move inside the nematic bulk because of the boundary conditions. They are thus
different from the hedgehogs that can exist both in the bulk and at the surface.
Due to this distinction, these surface defects are called boojums [32]; a necessary
condition for their formation is that the director field is either tangential or tilted
with respect to the surface so that the defect is characterized by an invariant k
in addition to N [21].

Polarizer

Analyzer

100 mm

Boojums Disclination ends

Figure 2. Schlieren texture in a sample with degenerate planar anchoring conditions.
The sample is observed between crossed polars. There are two black brushes associated
with the k¼�½ lines and four brushes (the Maltese cross) associated with the k¼�1 lines.

Topological point defects in nematic liquid crystals 4121



Finally, hybrid samples: a typical example is when a thin nematic film is spread
onto the surface of an isotropic fluid at which the director is oriented tangentially
(planar degenerate alignment) whereas the upper boundary is free. Quite often
the spontaneous anchoring at the nematic-air interface is homeotropic or tilted.
The competition between the two anchoring modes is relaxed by the presence
of surface point defects [22, 23].

2.2. Theory of the static point defect

In the one-constant approximation (i.e. K¼K1¼K2¼K3) the geometry of a point
defect can be represented near its core by the equations

� ¼ N�r þ �0, tan
�

2
¼ tan

�

2

� �N

ð4Þ

where �, � are spherical angles for the director in r; �r the polar angle of r
in the horizontal plane, � the angle between the Oz axis and the direction r [18].
It is apparent that �¼þ� for the star-like radial hedgehog, �¼�� for the hyperbolic
hedgehog. The energy does not diverge on the core; one gets, for the radial hedgehog,
by integrating the free energy density all over a ball of radius R with a point defect
at the centre

E1 ¼ 8�KR ð5aÞ

and

E�1 ¼
1

3
8�KR ð5bÞ

for the hyperbolic hedgehog [33].
Of course, there is a physical core, where the nature of the order parameter

is modified with respect to the region of ‘good’ crystal. Let us write for the radial
hedgehog the total energy as

Etot
1 ¼ 8�KðR� rcÞ þ �r3c : ð6Þ

Minimizing this expression, one gets

rc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8�K=3�

p
; Etot

1 ¼ 8�K R�
2

3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8�K=3�

p� �
: ð7Þ

rc does not depend on the size, R, of the sample and the energy is not significantly
different from E1, if the core is microscopic compared to R, as expected. Therefore,
one can adopt E1 as a first approximation for the total energy.

To find the minimizer of the integral ½
Ð
rnð Þ

2 (one-constant approximation)
in a given volume U�R3 is a problem relevant to the theory of harmonic maps with
defects [34]. An interesting result is that the minimal energy E[ if g of a set [ if g of given
point defects if g with Ni ¼ �1, such that

P
Ni ¼ 0, is given by the expression

E[ if g ¼ 4�KL ð8Þ
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where L is the minimal total length of the dipoles formed by linking point defects

of opposite signs two by two. One cannot overestimate the physical importance

of this result that stresses the interactions between opposite hedgehogs. These dipoles

are indeed visible in Schlieren textures. A somewhat analogous result was obtained

by Ostlund [35] and Brinkman and Cladis [36] through a dimensional analysis,

but for a unique pair.
Experimental observations show that the real situation is somewhat more

complex, even if some results of the simple model above do subsist: (a) K2 is always

small compared to the other moduli; it is then expected that the radial symmetry

could be broken by a twist deformation. This phenomenon has been observed

for surface defects, boojums in Schlieren textures of lens-shaped droplets [37] and for

radial hedgehogs in droplets [29], and studied later for spherical bipolar droplets

with pairs of boojums at the poles, both experimentally [21, 38] and theoretically

[39, 40]; in relation to these investigations, a radial hedgehog is not a minimizer

in a ball with homeotropic conditions, if the Frank constants are anisotropic [41];

(b) as pointed by Press and Arrott [37], the structure of defects is influenced by the

splay-cancelling mechanism, according to which the energy of splay deformations

along one direction can be reduced by splay in another direction, somewhat similar

to the phenomenon of soap films adopting a catenoid shape; (c) it has been suggested

by Melzer and Nabarro [10, 11], on the basis of their observations, that point defects

might be split into disclination loops, of strength k¼þ½ for a radial hedgehog,

of strength k¼�½ for a hyperbolic hedgehog (figure 3).
Two theoretical elements have been put forward which complete the present

picture of point defects in nematics: (a) the divergence moduli K13 and K24 can play

(a)

(b)

Figure 3. Splitting of point defects into disclination loops: (a) N¼ 1 (�k¼½); (b) N¼�1
(�k¼�½).
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a role in the stability of the model, in particular might decide whether the point
defect is split, or not, into a disclination loop; (b) the order parameter might change
smoothly in the core region, not only in modulus, but also in character. It has indeed
been suggested that it might be biaxial [42]. Computer calculations validate this
suggestion. We comment on these two points.

The Frank–Oseen elastic theory in the director representation has been used
by Mori and Nakanishi [43] and Lavrentovich et al. [44] to compare the energies
of the hedgehogs and their disclination loop modifications. The divergence elastic
term K24 is introduced by Lavrentovich et al. [44]. Equations (5a) and (5b) become

E tot
þ1 ¼ 8�ðK� K24ÞðR� rcÞ þ �r3c ð9aÞ

for a radial hedgehog, and

Etot
�1 ¼

1

3
8�ðKþ K24ÞðR� rcÞ þ �r3c ð9bÞ

for a hyperbolic hedgehog. The transformation to a disclination loop of radius �
adds in both cases a term of the order of �K24. It is clear that in the frame of this
simplified model the k¼½ loop is forced to expand if K24<0, to shrink if K24>0,
the reverse being true for the k¼�½ loop. The radius of the loop stabilizes for
a value � � � exp�ð4K24=KÞ, which is microscopic (� is the nematic coherence
length). By applying the electric field perpendicular to the loop in a nematic material
with a positive dielectric anisotropy, one can expand the loop to a larger radius [45].
(See Fukuda and Yokoyama [46] for a recent calculation of the hyperbolic hedgehog
in the same vein, but using the full Frank moduli anisotropy).

For the study of the core itself, the Landau–de Gennes theory has been largely
employed, allowing a variation of the scalar order parameter. It has been shown
by Schopol and Sluckin [47] that spherically symmetric configurations are exact
solutions which minimize the Landau-de Gennes free energy, and that the core,
whose size is found large compared to �, is isotropic. But disclination loops are also
solutions. A number of studies [48, 49] have exploited with success the suggestion
that the core of a |k|¼½ line is biaxial [42, 50, 51].

Complete models with anisotropic coefficients, divergence elastic terms, Landau
expansion in the full free energy, to what has to be added the role of boundary
conditions at a finite distance, produce more complicated results (see, for example,
Gartland, Jr. and Mkaddem [52, 53] and Kralj et al. [54, 55]). Of course, these
new developments often require heavy computational methods (see Lavrentovich
et al. [56]).

2.3. Interaction and dynamics of defects

As stated above, radial and hyperbolic hedgehogs couple in 3D uniaxial nematic,
by a soliton string in which most of the energy is concentrated (figure 4). For the
pair of hedgehogs of opposite topological charge, the director field within the soliton
can be written as [57]

n ¼
x

r
sin �,

y

r
sin �, cos �

� �
,
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where �¼ 2 arctan r? /r, r¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
, and r? is the soliton radius and z-axis is

the axis of rotation symmetry. In an infinite sample, from the point of view of the
Frank–Oseen model, there is no mechanism and no typical length to keep r from
becoming a zero; when r? ! 0, the energy per unit length of the string attains its
minimum value 4�K [57]. As the director gradients diverge at the core for r? ! 0,
a more refined approach is needed. Penzenstadler and Trebin [48] considered the
Landau–de Gennes theory in which the high density of director distortions is relaxed
by changing the uniaxial orientational order into the biaxial one, in the spirit of
Lyuksyutov’s approach to the problem of the singular core of disclinations and point
defects [42, 47]. They demonstrated that the soliton can decay into a uniform director
structure n¼ const by a mechanism of escape to biaxiality [48]. However, the decay
might be prevented by the energy barrier separating the uniform state from the
soliton state. A stabilization mechanism has been found by Semenov [57], who added
a 4th-order gradient term to the standard 2nd order Frank–Oseen functional,
fFr ¼ ðK=2Þrn2 þ K�2 rnð Þ

2. This term prescribes the soliton string to be of a
(generally macroscopic) fixed radius determined by the separation distance, L,
between the point defects located at z ¼ �L=2 and the nematic coherence length � (of
the order of a molecular size), namely, r?ðzÞ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�Lð1� 4z2=L2Þ

p
. The attraction force

between the defects acquires a small correction term [57],

f ¼ �4�K 1þ
3ffiffiffi
2

p
�

L

ffiffiffiffiffiffiffiffi
ln
L

�

s !
:

Any realistic liquid crystal sample is bounded; the consideration above then
might be applicable only when the characteristic size, R, of the system is much

2r⊥

z

L

Figure 4. Schematic director configuration of the hedgehog pair connected by
a soliton string.
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larger than L. When the two are comparable, the theory should take into account

the boundary conditions, namely, the ‘‘anchoring’’ direction and energy associated

with the director alignment at the bounding surfaces. In addition to R, the new
macroscopic length scale is K/W, usually ranging 0.01 mm to 10 mm. The problem

becomes much more complicated and the existing models often offer conflicting

views even for the simplest geometry of a bounded sample, such as the circular
capillary depicted in figure 1. Semenov’s theory [57] and the numerical analysis

by Gartland et al. [58] predict that the attraction of a pair of points in the capillary

can still be described by the expression above but only when L is very short, much

shorter than L� � d 2=3
c �1=3 that depends on the capillary diameter dc; for L> dc, the

attractive force decreases exponentially as exp �6:6L=dcð Þ, setting the hedgehogs

‘‘asymptotically free’’ and non-interactive at large separations. Qualitatively, the

bounding surface sets the director field practically the same on the both sides

of each defect core which implies that there is no net force acting on the defect.
Guidone Peroli and Virga [59, 60] also predicted an attractive potential, but of

a different type: the attractive force varies logarithmically with L at short

distances and vanishes at L � 1:1dc. Finally, a model by Vilfan et al. [61] predicted

that the defects would attract only when L<0.1dc and repel if set at a larger
separations. This last model has been inspired by an experimental NMR evidence

that in very narrow (submicron) cylindrical cavities, there might exist a (metastable)

state with alternating radial and hyperbolic hedgehogs separated by L 	 dc [62]
(see also the numeric simulations in Bradac et al. [63]). Although all models dealt

with the same basic director geometry, the boundary conditions have been chosen

a bit differently, which might explain the discrepancies, according to Holyst and

Oswald [64]: the surface anchoring was assumed to be infinitely strong, W ! 1,
thus rigidly fixing the director orientation at the boundary [57] was taken as finite

by Vilfan et al. [61], thus allowing for the (small) director deviations from the

anchoring direction at the surface.
Experimentally, the interaction of the topological point defects can be studied

in dynamical settings, by studying whether and how the defects of opposite

topological charge would attract each other and annihilate. As the first example,

consider two point defects in an infinitely large sample, connected by a string of

a constant width r whose elastic energy per unit length is �K. When the two defects
approach each other, the director reorientation and thus energy dissipation take

place mostly in the region of size �r; the drag force acting on the defects moving with

the closing velocity, v � �dL=dt, is then ��1rv, where �1 is the viscosity coefficient

for director reorientations. By equating this force to the elastic force, �K, one
concludes that the two defects should approach each other with a constant velocity;

or, equivalently, that the distance between the defects decreases linearly with time:

L tð Þ / t0 � t, ð10Þ

where t0 denotes the moment of annihilation. Interestingly, when the soliton width

tends to zero, r? ! 0, as in the case of infinitely large system with two point defects,

then the energy dissipation rate should diverge to infinity; as the elastic force remain

constant, it means v ! 0 [65]. Pismen and Rubinstein [65] interpret this result as
an indication that the local reduction of the uniaxial nematic order in the core region
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is essential for the defect interaction and dynamics and deduced that the distance

changes as

L tð Þ /
ffiffiffiffiffiffiffiffiffiffiffi
t0 � t

p
: ð11Þ

The dynamics obviously change when the potential of interaction changes.

For example, if the interaction potential is of a logarithmic type � lnL=� (which is

the case, for example, of point defects in 2D or straight parallel disclinations in 3D

[66]), then the elastic force is ��1/L and the drag force is ��1v lnL=�; therefore,
the defects move with acceleration and LðtÞ /

ffiffiffiffiffiffiffiffiffiffiffi
t0 � t

p
, or, including the logarithmic

correction, L2 lnðL=�Þ þ constð Þ / t0 � t, still similar to equation (11).
The dependence LðtÞ / t0 � t for the situation when the defects are indeed

connected by an experimentally observable linear soliton of a constant width, over

which the director experiences a rotation by 2� (similarly to figure 4, but not axially

symmetric) has been confirmed for the pairs of boojums at the surface of the hybrid

aligned nematic films [22, 67] and for the defects in freely suspended SmC films [68].

The stability of the soliton requires some ‘‘ordering field’’ [68] (e.g. an in-plane

electric field [67] or a film thickness gradient [69]) to confine the director distortions

within a region of a constant width. When the solitons do not exist, and the director

distortions spread in the entire region between the defects, the dynamics trend

changes from equation (10) to equation (11), as observed in the experimental

situations [22, 67, 68] above and in the hybrid aligned films of thermotropic nematic

polyesters with boojums [23]. Even when the solitons connecting the point exist, one

can observe a crossover from L tð Þ / t0 � t to LðtÞ /
ffiffiffiffiffiffiffiffiffiffiffi
t0 � t

p
when the separation

distance shrinks and becomes smaller than the width of the soliton, at the late stages

of annihilation [67].
The experimental situation with the point defects in circular capillaries is even

more complex. Both dependencies above have been observed for annihilating pairs

of hyperbolic and radial hedgehogs produced by the isotropic-to-nematic quench in

circular capillaries with dc¼ 350 mm [20]: LðtÞ / t0 � t for L � dc and LðtÞ /
ffiffiffiffiffiffiffiffiffiffiffi
t0 � t

p

for L 
 dc. A similar experiment [70] with 60 mm
 dc
 150 mm performed for

a similar thermotropic cyanobiphenyl nematic material produced a different result:

the sufficiently separated pairs L � dc of hyperbolic and radial hedgehogs at the

axis of the capillary did not show any signs of interaction; their separation remained

fixed for many hours. Once set in motion by an external perturbation such as

temperature gradient along the cylinder, the defects approach each other, first with

LðtÞ / t0 � t when L � dc and with L(t) exponentially vanishing at the final stages

of annihilation [70]. This is in contrast to the experiment [20] where the hedgehogs

were observed to approach each other even when separated by L 	 6dc, with

a constant velocity, equation (10), which was interpreted as the result of an elastic

interaction with a constant force �K. On the other hand, the experimental technique

used by Pargellis et al. [20] to produce the defects, namely a fast temperature

or pressure quench, might have led to temperature gradients capable of setting the

hedgehogs into motion even in the absence of such an interaction. For example,

the temperature difference on the two sides of a hedgehog would cause a difference

in the Frank elastic constants and thus in the elastic energies of these two regions.

Guidone Peroli et al. [71] also found L tð Þ / t0 � t for L � dc. However, they interpret
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it as the result of the imperfection in the normal alignment at the cylindrical wall
[71] rather as the result of any proper elastic interaction between the defects which
was taken as non-existent for L � dc. To illustrate the point, consider figure 1 and
assume that the director at the boundary slightly deviates from the perpendicular
orientation, by an angle, ’, say, downwards, so that the director ticks at the
right boundary in figure 1 turn from 3 o’clock towards 4 o’clock and the ticks
at the left boundary turn from 9 o’clock towards 8 o’clock. Such a deviation
might quite naturally be induced by the flow of the nematic fluid during the capillary
filling. Then the elastic energy (per unit length) of the configuration that escapes
‘‘downwards’’ (between the two defect cores in figure 1) will be larger than the
energy and ‘‘upward’’ escape (outside the defect pair), as the director rotates
by �þ 2’ across the capillary in the first case and by �� 2’ in the second case.
The energy of the escaped configuration scales as �K (it is independent of dc [4])
and so does the difference in the elastic energies (per unit length) of the two
regions. Therefore, the defects would approach each other to reduce the length
of the ‘‘overdistorted’’ region and the dynamics should follow equation (10) [71].
By reversing the sign of ’, the same argument should see the two defects in
figure 1 moving in opposite direction: the two would repel each other rather
than attract [71]. It might be of interest to verify this feature in experiments
by establishing the polarity of the director tilt with respect to the polarity of the
hedgehog pair(s).

To conclude, the only relatively well established experimental result for a pair
of hedgehogs in circular capillaries is that at short distances, L 
 dc, their dynamics
can be described by equation (11) (as also confirmed in numerical simulations with
the Lebwohl–Lasher lattice model [72]). What happens at L � dc is not entirely clear.
Recently, Holyst and Oswald [64] proposed using a somewhat different geometry,
a set of hedgehogs at the singular disclination line that forms near a cylindrical
meniscus of a nematic sample in contact with air. Subsequent experiments left the
group ‘‘certain that ‘‘þ1’’ and ‘‘�1’’ defects attract each other over at short distances
and repel at large distances’’ [73]. Note that all the experiments performed so far
reduce to the passive observation of defects locations and their change in time;
in the future, it might be useful to add a new experimental technique of a controlled
trapping and manipulating the defects with optical tweezers (see, for example
Hotta et al. [74] and Smalyukh et al. [75]).

An important feature of the hedgehog dynamics at short separation distances
established by Cladis and Brand [70] is that the radial and hyperbolic hedgehogs
move towards each other in the capillary with different velocities; the former moving
noticeably faster than the second one, especially near the nematic–smectic transition,
where the bend deformations characteristic for the hyperbolic defect become
accompanied by a very large elastic constant. The result is most probably related
to the backflow effect, i.e. the flow of the nematic fluid caused by director
reorientation. Although the backflow effect is of certain importance in any defect
dynamics problem, it is extremely difficult to incorporate into the models and
is usually neglected. Nevertheless, Blanc et al. [76] recently demonstrated that in
the similar problem of dynamics of two linear disclinations, the difference in the
velocities of the defects of different strength is related to the backflow effect rather
than to the elastic anisotropy.
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The dynamics of defects has been attracted interest also from the point of view
of the phase transition scenarios, not only in liquid crystals and condensed matter,
but also in cosmological models (the Kibble model and Zureck model, for
example [77]). During the quench from the highly symmetric phase (such as the
isotropic fluid) to the lower symmetry phase (a uniaxial nematic, for example), the
different pieces of the new phase might acquire different values of the order
parameter phase (the director orientation) [4]; when they expand and meet each
other, these differences produce topological defects. The quench is then followed
by a relaxation process in which the density, N, of defects decreases as the result
of their annihilation; for the hedgehogs, the rule should be N tð Þ / L�D, in
D-dimensional space (see, for example, Toyoki [78] and Wickham [79]). The
isotropic–nematic transition has attracted especial interest in this regard [16, 80],
mostly because of the (apparent) ease with which the experimental data can be
created and collected. The latest theoretical result predicts that in 3D, the hedgehog
densities should decay as NðtÞ / L�3 / t�3=2 if there are no other defects such
as disclinations. In the experiments by Chuang et al. [16], however, the number
of hedgehogs has been observed first to increase immediately after the quench,
then reach a maximum and quickly decrease, approximately as NðtÞ / t�3. These
unusual features might be related to the presence of disclinations and to the mutual
transformations of hedgehogs and disclination rings. A direct hedgehog–hedgehog
annihilation in the 3D nematic bulk without disclination lines involved has been
reported to obey equation (11) [81]. The same behaviour, equation (11) with
NðtÞ / L�2, has been observed by Dierking et al. [82] for the annihilation dynamics
of umbilical defects in 2D. A single umbilical defect represents a pair of two surface
defects, boojums on the opposite sides of the flat cell filled with the nematic
of a negative dielectric anisotropy; they appear when a strong electric field is
applied to the cell and the director realigns from its original homeotropic orientation.
As in the case of pair annihilation in a cylindrical capillary, much more needs to
be done before the dynamics of defect tangles in quenched systems with hedgehogs
and disclinations can be completely understood. Note that for the clarification of the
role of backflow effect the studies of dynamics of boojums and umbilicals might
be very productive: the singular (molecular) core that creates problem in many
computer simulations does not exist here, as the ‘‘cores’’ of the surface defects
and umbilicals are macroscopic.

3. Singular points in nematic colloidal suspensions

Colloids in which the liquid crystal is either a dispersed component [83] or nematic
colloids in which the liquid crystal serves as a medium containing droplets of water
or solid particles [84, 85], are populated by point defects whenever the surface
anchoring at the interfaces is strong enough (R � K=W). Different boundary
conditions (director normal to the interface, tangential, or tilted) lead to two
different types of point defects. For example, the equilibrium state of a spherical
nematic droplet with normal orientation corresponds to a radial hedgehog
(or its topological equivalent such as a ring), while tilted or tangential orientation
lead to boojums (surface defects) (figure 5).
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The topological characteristics of all point defects in a single connected nematic
volume must satisfy the restrictions imposed by the Euler–Poincaré and Gauss
theorems. For p hedgehogs and q boojums enclosed by a surface of an Euler
characteristic, E, the restrictions are [21]

Xqþp

i¼1

Ni ¼E=2;
Xp
j¼1

kj ¼E: ð12Þ

The conservation laws given by equation (12) can influence the late stages of the
first-order isotropic–nematic phase transition that occurs through nucleation
of nematic droplets. The droplets grow by adding molecules from the surrounding
isotropic matrix and by coalescence. In early stages, the droplets are small and the
director within them is practically uniform; they might form defects upon
coalescence according to the Kibble mechanism, when three or more nematic
droplets with different director orientation coalesce. However, as soon as the
droplets grow above Rc¼K/W, each of them acquires topological defects obeying
equation (12). For the popular nematic pentylcyanobiphenyl (5CB), the surface
anchoring coefficient at the nematic–isotropic interface is W	 106 J/m2 [86]
while K	 2� 1012 J/m2 [87]; therefore the anchoring-induced production of defects
becomes effective for R � Rc 	 2 mm. Figure 6 shows nematic droplets growing
from the isotropic melt (E7 mixture containing cyanobiphenyls, similar to 5CB):
supramicron droplets clearly carry stable topological defects. Due to the surface
anchoring that sets tilted conical director orientation (similar to 5CB, see Faetti
and Palleschi [86]) there are both boojums and disclination loops [21]. As figure 6
demonstrates, the anchoring mechanism is extremely effective, producing one
disclination loop per each nematic ‘‘bubble’’ of the appropriate size. Bowick et al.
[80] expanding on the earlier studies by Chuang et al. [16], have discovered that
the number of ‘‘strings’’ (disclinations) produced in the isotropic–nematic transition
is about 0.6 per nematic ‘‘bubble’’ (droplet). Although this number has been found
to be in reasonable agreement with the Kibble mechanism [80], it might also signal
a significant contribution from the anchoring mechanism, as many droplets in the
experiment [80] have been larger than 10 mm. The balance of Kibble and anchoring
mechanisms in defect production during the isotropic–nematic phase transition
is still an open problem. Clearly, it should strongly depend on the speed and depth

30 µm

(a) (b)

Figure 5. Experimental textures of radial (a) and twisted bipolar nematic droplets (b) viewed
between two crossed polarizers.
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Figure 6. The sequence of textures of nematic nuclei at the isotropic–nematic transi-
tion caused by temperature quench in the mixture E7 as viewed between two crossed
polarizers. The nuclei carry boojums (black arrows) and disclination loops (white arrows)
(a, b); merging (c) results in disclinations with ends trapped at the cell’s plates.
Cell thickness¼ 200mm.
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of quenching; fast quench that produces numerous submicron nuclei separated
by submicron distances might avoid the anchoring mechanism. The critical radius
of nucleation is �c ¼ 2	=f (see, for example, Kleman and Lavrentovich [4]), where
	 �10�5J=m2 [86] is the surface tension coefficient for the isotropic–nematic
interface, and f is the bulk energy density difference between the isotropic and
nematic phases. Estimating f � �T�H=TIN, where �T ¼ TIN � T is the depth
of temperature quench and �H�105 J/m3 is the latent heat of transition [88],
one finds the critical radius ranging from �c � 0:01� 0:1ð Þ mm when the quench is
a 1–10� below TIN and to �c ! 1 when T ! TIN. Therefore, even a fast
temperature quench might lead to large droplets if it is not deep enough. On the
other hand, slow quench might tell a story of anchoring-induced defect dynamics in
growing droplets that is of interest on its own, irrespective of the Kibble mechanism.

In the nematic droplets, the equilibrium director configuration and the
corresponding defects change when the boundary conditions change; for example,
one can cause transformations between bipolar structure with a pair of boojums
and a hedgehog by changing the temperature of the sample which in its turn changes
the surface orientation from tangential to normal [21, 89]. Director deformations
associated with the defect structures in the droplets can cause flexoelectric
polarization that contributes to electrostatic interactions between the nematic
droplets [90–92].

Point defects help to stabilize nematic emulsions [93–95]. For example, imagine
an isotropic (say, water) droplet with a normal boundary conditions (that can be set
by adding a small amount of a surfactant such as lecithin to the system) in the
nematic sample with a uniform director. If the droplet is large, then it would distort
the director around itself acting as a radial hedgehog with an enlarged ‘‘core’’. If the
far-field of the director is uniform, then such a droplet would create a satellite
hyperbolic hedgehog that balances the topological charge N¼ 1 of the droplet. The
director field around the droplet adopts a dipole configuration. When there are many
droplets in the system, they attract each other at large distances and repel at
distances comparable to the droplet diameter 2R and thus form chains of alternating
droplets and hyperbolic hedgehogs. For distances d� 2R, the elastic force of
attraction scales as F / KR4=d 4 [93–95], which has been experimentally verified
for the case of ferrofluid droplets [96] and most recently for solid particles
manipulated by optical tweezers in the nematic bulk [75, 97].

A spectacular illustration of the role of point defects and the critical size
Rc 	 K=W in stabilization of emulsions has been found by Loudet et al. [98] who
demonstrated that small isotropic oil droplets phase separating from the nematic
host E7, can grow till their radius approaches Rc 	 2 mm; after that, each oil drop
forms a satellite hyperbolic hedgehog; the droplets attract each other into long chains
parallel to the alignment direction of the nematic phase. Ultimately, a highly ordered
array of parallel macroscopic chains is formed, made of monodisperse droplets
which do not coalesce, in sharp contrast to the scenarios of phase separation in
isotropic fluids. Note that the distortions around the droplets can drive them
to accumulate in specific regions of the nematic matrix such as other defects
(disclinations) [99] and interfaces [100, 101].

If the role of the surface anchoring is reduced (or if the electric field is applied
to the droplet [102–104]), the hyperbolic hedgehog can be transformed into
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an equatorial disclination loop embracing the droplet, which is known as the
Saturn-ring configuration, first envisioned theoretically by Kuksenok et al. [105, 106]
on the basis of Frank–Oseen theory; and then observed experimentally in
thermotropic [107, 108] as well as lyotropic nematics [109] (figure 7). Computer
simulations also suggest that the hyperbolic hedgehog can transform into the Saturn
ring when the size of the spherical particle decreases [110, 111]. The interparticle
interactions acquire quadrupole symmetry when the dipole hedgehog configuration
changes to that of the Saturn ring symmetry in the external electric field,
as demonstrated by Loudet and Poulin [104].

The interparticle interactions become much weaker, F / 1=d 6, when the normal
boundary conditions are changed to the tangential ones [112, 113]. The director field
acquires two defects, boojums at the poles of the particle, and the symmetry of
a quadrupole. As established experimentally with the help of optical tweezers [114],
the interaction might be of repulsive or attractive nature, depending on the mutual
position of the two droplets, but it deviates from the quadrupolar model when the
distances between the particles become comparable to a few D’s.

The studies of dynamics of defect formations in colloidal systems are at the stage
of infancy [115, 116]. For example, Stark and Ventzki [115] calculated the Stokes
drag of spherical particles moving in a nematic host for three different configurations
shown in figure 7. The hedgehog configuration is very different from the other
two because of its dipolar symmetry.

4. Conclusion

The large birefringence of liquid crystals allow easy optical microscopy observations
of defects, whose number is scarce in the field of view, due to the viscous relaxation

(a) (b) (c)

Figure 7. A spherical inclusion in a uniformly aligned nematic matrix with homeotropic
boundary conditions (a) resembles a radial hedgehog and produces a hyperbolic satellite when
its size is much larger than the anchoring extrapolation length K/W; (b) causes a Saturn ring
configuration when the two are comparable; and (c) is ineffective to distort the director when
much smaller than K/W.
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of the sample inhomogeneities; observed defects are usually in equilibrium with the
boundary conditions, and of small energy. This explains why topological point
defects in condensed matter physics were discovered there, in parallel with the
investigations on Bloch points in magnetic bubbles [117]. This is at the origin of a
noticeable (but limited) series of observations and, above all, of theoretical
developments, including the topological theory of defects and their elastic and
dynamic properties. The present day observation resolution is far below the advances
made thanks to computational methods, in particular in the structure of the core and
the anisotropy of the Frank coefficients; new experimental methods are thus awaited.
One can, however, expect that more recent optical methods, such as ultra rapid
confocal polarizing microscopy, attended by laser manipulations of small particles
(e.g. in nematic colloidal suspensions) or even of defects themselves, might help in the
investigation of macroscopic dynamic properties, at least.
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