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Recently we investigated the occurrence of static periodic stripes in a hybrid aligned nematic cell. As-
suming that the tilt anchoring was stronger at the planar wall than at the homeotropic wall, we have
found the critical thickness of the cell for the transition from planar to periodic alignment as a function
of the surface energy in the presence of a magnetic field. Here we study, for the same kind of cell, the
critical thickness between the periodic and the aperiodic deformed structure by means of an appropriate
numerical technique. As expected, such a threshold was found to be greater than the asymptotic thresh-
old between planar and aperiodic structures. We performed an experiment, which allowed us to give an

estimate of the surfacelike elastic constant K.

PACS number(s): 61.30.Gd, 68.10.Cr

I. INTRODUCTION

In recent papers [1-4] the occurrence of static periodic
stripes in the hybrid aligned nematic layers has been in-
vestigated. Such cells possess homeotropic (H) anchoring
at one of the walls and unidirectional planar anchoring
(P) at the other [5]; moreover, the planar anchoring was
assumed to be stronger than the homeotropic one. In
this kind of cell, three different behaviors of the director
(that is, of the local mean orientation of the molecules)
can occur. Since the P anchoring is the stronger one, the
director can assume a uniform distribution parallel to the
easy direction of the planar wall (P) when the thickness d
is lower than a critical one; above such a value, an
aperiodic deformed hybrid alignment of the nematic cell
(HAN) and a periodic deformed structure (PHAN) can
be achieved (see Fig. 1). The periodic pattern in P-
oriented nematics was earlier discussed by Bobylev and
Pikin [6] as due to a flexoelectric coupling with an im-
posed electric field: later, it was observed by Lonberg
and Meyer in the case of strong anchoring [7] and studied
by Miraldi, Oldano, and Strigazzi in P-nematic layers
weakly anchored in the presence of an external magnetic
field [8]. Only recently, the occurrence of the PHAN
structure in a hybrid cell without external field has been
discovered: in this case, the role of the field is formally
played by the cell thickness, but the real cause of the in-
stability is the nonzero saddle-splay rigidity of the nemat-
ic [9,10]. Our previous papers on this subject have been
devoted to the analysis of the transition between the
PHAN and the P configuration. We studied [1,2] the
dependency of the threshold thickness, that is, of the cell
thickness above which the PHAN is allowed, on the elas-
tic constants and on the anchoring strengths [11]. Fur-
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thermore, we also considered the influence on this thresh-
old of a magnetic field normal to the cell plates [3,4].

When the possibility of the existence of a PHAN struc-
ture was not known, Barbero and Barberi [12] dealt with
the P-HAN transition, and obtained the threshold depen-
dency on the tilt anchoring strengths. The question now
arises, where is the actual PHAN-HAN threshold? Is it
maybe above the “asymptotic” P-HAN threshold found
in Ref. [12]? Moreover, is the PHAN structure always
possible? In the present paper we investigate these
points, in the framework of a nonlinearized approach for
a model treating nematics with bulk elastic isotropy
(K=K, =K,,=K33;) in the absence of external fields.
This simplified model is necessary since the theory for the
PHAN-HAN transition is much more complex than the
one for P-PHAN transition.

The aim of our work is to describe theoretically the
PHAN-HAN transition and to compare the model with
preliminary experimental data concerning the nematic
liquid crystal pentylcyanobiphenyl (SCB), which allow an
estimate of the saddle-splay elastic constant K,,.

II. THEORY

The distortion free-energy density of Nehring and
Saupe [13], in the case of a nematic liquid crystal having
bulk elastic isotropy, in the framework of the usual first-
order continuum theory [14] is given by

f=1K {(divn)*+(n-curln)’+(nXcurln)?}
—(K +K,4)div[n-divn+nXcurln] , (D

where K =K,,=K,,=K,; is the common bulk elastic
constant, K,, is the saddle-splay elastic constant, and n is
the nematic director, i.e., the local average of the molecu-
lar long axis. Let us assume a Cartesian reference frame
[xyz], [xy] being the plane coincident with the H wall
2, =0, where the easy direction is homeotropic, whereas z
is the coordinate normal to the substrates. Then the oth-
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er wall, where the easy direction is unidirectional and
planar, is identified by z, =d, d being the cell thickness.
Moreover, at the P substrate the easy direction is parallel
to the x axis.

The director n may be described by two angles in a po-
lar reference frame [¢,0], where the azimuth ¢ is ac-
counted for in the plane [xy] from the x axis, while the
polar angle 0 is measured out of the plane [xy]. Hence

n=1icos¢ cosf+ jsing cosd+k sinf . (2)

For the P-PHAN transition, we can expand to the second
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FIG. 1. (a) Aperiodic configuration in a hybrid aligned
nematic (HAN) cell, having tilt anchoring weaker at the wall
2¢=0, where the preferred direction is homeotropic (H), than at
the wall z, =d, where the easy direction is unidirectional planar
(P); (b) Periodic hybrid aligned nematic (PHAN) cell of splay
type: the leading parameter is the cell thickness d, which plays
the role of an external field.

power the reduced free-energy density g=2f /K around
the undeformed planar structure (6=0,¢=0) [2], obtain-
ing the parabolic contribution to the reduced free-energy
density actually confined to the bulk in the simple form

g =(8,+6,2+(6,— 4,7, 3)

where the subscripts y,z refer to the derivatives with
respect to the corresponding coordinates.

In fact, the saddle-splay contribution ggg goes to the
surface, due to Gauss’s theorem, giving rise to the
second-order terms

8ss =2(1+Ky)[— o001 60ob 0+ 810, —0:0,,] , 4)

where k,=K,, /K is the surface-to-bulk elastic ratio and
the subscript j =0, 1 refers to the z, =0, z, =d substrates,
respectively. Moreover, the azimuthal and tilt anchoring
contributions, according to Rapini-Papoular [11], write
to the second-order terms

8,=L3'¢6—Lg' 65+ Ly ' ¢1+Lg' 67, (5)

where L, =K/W;;, Ly=K/Wy are the de
Gennes-Kléman extrapolation lengths [15,16], Wi W,
being the torsional and tilt anchoring strengths.

The reduced free energy G is then obtained as

G=Gb+Gs ’
A d
Gy=[dy [ 8(6,.6,.6..9,)dz ,
A
Gszfo gs(91’¢1’0y1’¢y])dy ’

8 =8sst8&u >

(6)

A being the wavelength of the periodic pattern, whose
wave vector B=2m/A is parallel to the y axis, i.e., trans-
verse to the P easy direction. Close to the P-PHAN tran-
sition, g, and g; are expanded to the second power in the
angles ¢, 6.

Instead, if the PHAN-HAN transition is concerned,
we have to work around the aperiodic deformed structure
(HAN): due to this fact, it is only possible to linearize
the torques on ¢, 0 being generally finite and different
from zero.

Linearizing only on ¢, we obtain a reduced free-energy
density g, actually confined to the bulk in the form

8, =0,+62+ (92 +¢2)cos’0+2(¢,6,—6,6,)cos?0 .

(39
The saddle splay becomes now
8ss =2(1+kg)[ —dob,0+ 3¢,05in26,
+¢,60,,—+¢,,5in26,] . 4')

On the other hand, implementing the Rapini-Papoular
approach, the nonlinear anchoring energy density must
be written in covariant form

fly=[—a;(mi?+(—1Y/"b;(n-k)’], j=0,1, @)

where a; and b; are positive, and a, <b,. We stress the

fact that at the H wall (j =0) there is an easy plane, i.e.,
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[xz], whereas at the P wall (j =1) the easy plane is the P
wall itself. The tilt anchoring strengths W, are derived
by normalizing (7) for ¢j=0, while the torsional anchor-
ing strength W,; is normalized by applying to (7) the
condition 6;=0. In fact we have

1
a;=5Wy;

b;

Hence Eq. (7) finally reads
fly=1[Wysin’¢;cos’0,+(—1) "1 Wysin0,]  (7)

and the reduced anchoring energy density, linearized
only on ¢, is obtained as

gw=L 4 $3cos’6,— L ' sin’6,
+L 4 ¢icos’6,+ L ' sin’6, . (5"

Following the usual procedure [17], we linearize only on
¢ the Euler-Lagrange equations

9% _ 3% 3 %
a6 9z 36, dy 30, ’
9
% 0538 3 %
o0p 3z 34, Oy 3¢, ’
and obtain
6,,+6, =0,
yy (10)
¢,, t¢,,—20,4,tan6=0 .
Hence the boundary conditions
3 1
iﬁJrags_iags 0,
a0, 96 9y a6, |,
(11
O O 3 % | _
b, 3¢ dyae, |,

in the same assumption read
Ly
920+ Tsln200+¢yoR0( 60 ) =0 N

— 640870+ L 3! $ocos?0+6,0R (6) =0, 1
—1

Lo . _
621+——2———sm291+¢y1R1(91)—0 ,

—¢,,c0820, — L ;' ,cos*0,+6,,R (8,)=0,

where R;(6,;)=cos’0; —(1+#k,)[1+cos26;], with j =0,1
at the walls z, =0, z, =d, respectively.

In the PHAN regime, but close to the PHAN-HAN
threshold, we look for a solution of the kind

0(z,y)=06(z)=¢€l(z,y) , (13)

where €(z,y) is a periodic perturbation of the HAN struc-
ture described by ©(z). To find ©(z) we have to solve the
equation

0,=0, (14)

with the following boundary conditions:
—1

0.+ —25in20,=0 ,

. (15)

Ly

0, + —5in20,=0 .

z1

Now we go back to the nonlinear system (10), whose per-
turbed representation is written

€, 1te€,=0,
¢,, +¢,,—20,4,tan®=0,

(16)
obtained by a simple linearization on €. The perturbed
boundary conditions are obtained as

€0 L g0' €,c0820,+ ¢ (R ((0))=0 ,

—6,4c08’0)+ L 5! doc0s’Oy+€,0R 1(0,)=0 ,

€1+t Lg'€,c0s20,+¢,,R,(0,)=0, "
—¢,,c08’0,—L ;' ¢,c0s’©, +¢€, R (0,)=0 .

We now search for a solution of the type [2,4]
€(y,z)=( A sinhfBz + B coshf3z )cosfBy , (18)

d)(y,z):(Clek‘Z+C2ekzz)sinBy .

We stress the fact that the ¢ differential equation in sys-
tem (16) has no constant coefficients. To solve the prob-
lem, we subdivide the cell into N layers of equal thick-
ness. In each layer we assume the values of © equal to
the value of the function ©(z) calculated in the middle of
the layer ©;. This is also the case for the derivative
©,=06,,. Obviously this procedure is meaningful only if
N is large enough.
The second equation of system (16) reads

é(z;)_‘_(b‘(vly)_*_Hi‘.b(z”:O , (19)

where H,= —20,,tan©; for the i layer. Substituting the
second equation of system (18) into (19) we found for
each layer the values of k|’ and k%”. What happens to
the integration constants C|’ and C}’, which change
from layer to layer? We use them to relate the different
solutions ¢'” at the boundary of the layers (i)—(i+1),
imposing continuity to the function ¢ and to its first
derivative with respect to z:

dl
(20)

L kiig L oklg ) gty ) KU+
C(Il)e 1 1+C(21)e 2 rzc(ll+l)e 1 :+C(21+1)e 2

X A ) L klig
k(lt)c(ll)e 1 :+k(21)c(21)e 2 %

. . klithg . . klithg
=k(11+l)c(ll+l)e 1 :+k(21+1)c(21+1)e 2 i ,
where d; is the distance of the interface between the (/)
and the (i +1) layer, from the cell H substrate z,=0.

By the use of a simple linear homogeneous recurrence
relation, it is possible to write the coefficient C(}') as a
function of the first two integration constants C*,CY".
Writing the last two coefficients Cc\™,ci™ as a function
of C{» and CY’ and substituting the solutions (15) into
the boundary conditions (14), we obtain a linear homo-
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geneous system of equations in the arbitrary amplitudes
A, B, C ‘,0), and C (20’. Such a system admits a nontrivial
solution only if the (4 X4) determinant D is equal to zero,
providing a dispersion relation. The D elements are given
by

a; =0,

a;,=BRy(6,) ,

a3 =(k{" —L 5 )cos?0, ,
a13=(k =L ' )cos’®; ,
ay =PLy ,

a,, =cos20, ,
a,3=LgBR(O,) ,

Ay =4as; ,

a3, =PBsinh(Bd)R(O,) ,
a3, =PBcosh(Bd)R(0,),

(21)

(N)
kMg

)

kiNPd
ay3=cos’0,[(k{NFye ' "+kMMye

(N) (N)
—L M Fye T My ],

(N)
kiNa

03 =c0s’0,[(kMGye !+ kMN
34 1Kk ON 2 Nye )

)],

_ KNy kMg
—L¢11(GNe ! +NNe 2

a4, =sinh(Bd )c0s20,+ Ly Bcosh(Bd) ,
a4, =cosh(fBd )c0s20,+ L4 Bsinh(Bd) ,

(N) (N)
a5 =LgyR, (0" Fy+e* ‘MyB,

(N)g

k(N)d k
au=LgR ()" Gyte® Ny)B,

where Fy, Gy, My, and Ny are given by the following re-
currence relations:

Fi=fF,_+gM;,_, Fo=fo,
G,=fiG;_1+&N:,_1, Gy=8g,

(22)
M;=mF, +nM,_,, My=m,,
Ni=m;G;,_,+m;N;,_,, No=n,,
with
G+1) _7,.(i) k{id.
fi= k; ki e !
i i (i+hy
k(21+1),_k(11+1) ekl‘ d,
G+1) _7,.() kd,
k3 k3 et
& kG +D g+ D ek(li+”di J
) (23)
() _ g (i+1) 3
m = ki’ —kj e
! k(2i+1)_k(li+1) ek(‘i+1)d‘ ’
; : (i)
. k(zl)_k(lx-f-l) ekz'di

iT G i G+1)
k(2:+1)_k(lt+1) ekll d;

coming from the continuity condition of the azimuth ¢
and of its derivative ¢,. The dispersion relation D=0
provides d as an implicit function of 8. In fact we obtain
a function d(B,k4,L;,L4;) which for given values of the
elastic ratio «x, and of the azimuthal- and tilt-
extrapolation lengths L,;,Lo; provides the correspon-
dence between the possible wave number S of the trans-
verse periodic pattern and the cell thickness d when ¢ is
small: this means close to the PHAN-HAN but also to
PHAN-P transition. In other words, the vanishing of D
given by (16) recovers also the threshold PHAN-P [2]. In
particular, such a threshold dp is the minimum of the
curve d(f3), whereas the threshold PHAN-HAN, d,, cor-
responds to the maximum of the same function, provided
both situations correspond to minima of the cell reduced
free energy G. In Fig. 2 the thresholds d,,d, are report-
ed vs the elastic ratio k4, for different values of the tilt an-
choring strengths L,;, when the azimuthal anchoring is
negligible (L,;= ). Note that all lengths are normal-
ized by the asymptotic HAN-P threshold d2*=L g — L,
[12].

III. EXPERIMENT

Our experiments have been made using the liquid crys-
tal pentylcyanobiphenyl, SCB (purchased from EM In-
dustries, Inc.), which exhibits the nematic phase at room
temperature. All sample preparations and measurements
were performed at room temperature. To provide a hy-
brid aligned film with zero anchoring in the horizontal
plane, a small drop (1-10 mg) of the nematic has been de-
posited on an isotropic liquid substrate, which does not
dissolve the liquid crystal. As a substrate we have used
glycerine, providing the tangential orientation of the

LA DL DL LI L

LN DL LI L

FIG. 2. PHAN-P threshold d, and PHAN-HAN threshold
d, as function of the saddle-splay—to-bulk elastic ratio
k4=K,4/K for different values of the reduced tilt anchoring
strengths Lgy/d2,Lg, /d?®, normalized to the asymptotic
threshold HAN-P d;*=Lg —Lg,, at the H and P walls, respec-
tively, for no twist anchoring (L4 =L4; = o).
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director n at the lower film boundary, which acts as a P
wall. Such a feature has been checked up independently
by suspending small liquid crystalline droplets in a
glycerine matrix: these drops display bipolar structure
which implies the tangential boundary conditions [18,19].
The upper boundary of the film has been left free; thus
the director orientation was nearly normal to it, provid-
ing an H wall (see Fig. 3). The box with glycerine and
nematic layers has been enclosed in order to minimize the
contamination. Because of the nonzero contact angle,
the spread nematic drops have a nonflat profile. The
average thickness d of the liquid crystalline film has been
estimated by the measurements of the drop weight and of
the surface area of the spread film (typically 20—50 cm?).
It was found that the HAN configuration, which is uni-
formly oriented in the horizontal plane, is unstable with
respect to the appearance of the periodic domain pattern
(PHAN) when the film thickness d is smaller than a first
critical value d,. For the SCB-glycerine interface
d,=0.4%£0.1 um. On the other hand, for d smaller than
a second critical value dp, the unidirectional (at least in
the horizontal plane) P structure is found to be more
stable with respect to PHAN. In our case of nonflat
droplets d, was estimated to be less than 0.15 um. The
observed domain textures are shown in Figs. 4 and 5. A
periodic stripe pattern appears in sufficiently thin films;
the periodicity of the structure strongly depends on the
film thickness and decreases as one moves towards the
drop edge. If the nematic drop is thin, then the spread
nematic layer has thickness d <d, everywhere. This is
the case of Fig. 4, where the drop shows the stripe pat-
tern everywhere except a narrow periphery region with
almost unidirectional orientation along the normal to the
drop border (x axis). On the other hand, if the nematic
drop is thick enough (Fig. 5) the central part has d >d,
and the domain structure appears only at the periphery
where d, <d <d,. The domains are elongated along the
normal x to the film edge. The domain textures depend
on the orientation of the crossed polarizers of a micro-
scope with respect to x. To describe these textures it is
convenient to use the notation n,, for the horizontal
component of the director field at the lower boundary of
the film, i.e., at the P wall z, =d. If one of the polarizers
is oriented along the x axis, the domains appear as bright
regions interrupted by thin dark lines of extinction (see

air
H
nematic \y
P
z
glycerine

FIG. 3. Crude representation of the spreading of the nematic
droplet profile.

FIG. 4. Small 5CB drop, viewed through crossed polarizers.
The PHAN-P line, where the cell thickness is d,, is close to the
boundary of the drop. Bar length is 125 um.

Fig. 6). Alternatively, the thicker neighboring part of the
film (where d >d,) looks like a dark field due to the uni-
form alignment of n,, along the x axis. When one rotates
the sample between the crossed polarizers, the dark thin
lines in the domain region move and extend, and the tex-
ture transforms into an alternation of broad dark and
light stripes (Fig. 6). Such a behavior is similar to that
observed by Livolant and Bouligand for columnar phases
of some bipolymers [DNA and poly y-benzyl L-glutamate
(PBLG)] with sinuous undulation [20]. However, as
shown by the use of a quartz wedge, the geometry of n,,
is different (see Fig. 6).

Each domain consists of two parallel subdomains with
equal thickness but opposite inclination on n,, with
respect to the x axis. At the boundary of the subdomains
n,, is parallel to the x axis and thus coincident with
in the neighboring uniform part of the film. The angle a
of the n,, inclination compared to the x axis grows from
a=0 at the subdomain boundary to some maximal value
a=a,, at the central part of the subdomain. As the
thickness of the film decreases, one observes (i) reducing
of the domain periodicity A; (ii) appearance of disloca-
tions with the Burgers vector equal to A, and (iil) nu-
cleation of new domain generation with smaller periodici-
ty and with new preferable orientation x’, which is tilted
with respect to the x axis (see Fig. 7). Sometimes the

FIG. 5. Precursor of a big 5CB drop, viewed through crossed
polarizers. The PHAN-HAN line, where the cell thickness is
d,, is towards the drop center. Bar length is 150 um.
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third domain generation as well as square lattices of point
defects are observed. The decrease of the domain perio-
dicity A with the film thickness d might be illustrated by
Fig. 8, where A is plotted as a function of the distance x
between the threshold line, which corresponds to d =d,,,

I Ll il It ’
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(b)

FIG. 6. Periodic domain pattern of the nematic film: n,, dis-
tribution and extinction bands (dashed areas) for different orien-
tations of the crossed polarizer. Extinction bands occur in those
places of the texture where n,, coincides with direction of po-
larization either of the polarizer or of the analyzer.

FIG. 7. The nucleation of the secondary domain generation
with common direction x’ which is inclined with respect to x:
texture. Bar length is 200 um.

and the point of measurement. It is important to note
that in principle one can reconstruct the precursor shape
of the drop by the measurements of A(x), if the dependen-
cy A(d) is known. For example, if A were a linear func-
tion of d, then the precursor shape would be represented
just by the profile A(x).

As shown in [21] and briefly discussed below, the
nonflat profile of SCB droplets deposited directly onto the
glycerine substrate results in a specific “‘geometrical” az-
imuthal anchoring. The azimuthal anchoring in accor-
dance with the considerations given above affects the pa-
rameters of the periodic pattern and thus leads to
difficulties in the determination of K,,. To avoid the
problem we have prepared another type of sample. The
liquid crystal was dissolved in hexane. The solution was
deposited onto the glycerine substrate and the solvent
was evaporated in a clean environment. The resulting
5CB films show uniform thickness and the periodicity of
the PHAN pattern does not change much from point to

30 T T
o o
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v VvV
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25 b 0 4
S
~ o
g v o
3 20 | o i
< Ve
¢
O o
O
15 |+ [e) o
10 1 1
0 500 1000 1500
x (um)

FIG. 8. PHAN pattern wavelength as function of the x dis-
tance from the HAN-PHAN threshold in big droplets: experi-
mental data on two different samples.
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point. For this type of film and for a temperature of
24.5°C the PHAN structure occurs starting with
d,=0.4810.05 yum and A=180 um. The thinnest film
possessing PHAN structure we were able to identify had
d=0.0210.01 yum and A=2 um. Films thinner than
0.02 um still possess birefringence but it is difficult to dis-
tinguish a periodic pattern.

IV. DISCUSSION

A. Degenerated torsional anchoring

Due to the isotropic nature of both the surrounding
media, glycerine and air, the boundary conditions for n
were degenerated in the film plane. Really, all the hor-
izontal orientations of the nematic lines which keep the
same polar angles have the same energy. This means that
in the flat film the torsional extrapolation lengths L 4, at
the air side and L, at the glycerine boundary are
infinitely large. Thus the boundary conditions (17) and
consequently the dispersion relation D =0—see (21)—
become simpler, and it is easy to estimate the saddle-
splay elastic constant K,,. Let us assume that the tilt an-
choring strength L o, at the upper side is Wy, =1X107°
N/m. Since for SCB we have K =7 pN, Ly ~0.7 um is
obtained. From our experimental data (dp <0.02 pm,
d,~0.48 pum), we derive from the dispersion relation
D =0, in the first case a numerical relation «, vs L4 pro-
viding d, is approximatively equal to the experimental
value, and in the second case another numerical relation
k4 vs Loy, providing d, [see Figs. 9(a) and 9(b)]. By sim-
ple inspection of this figure, we can see that d, deter-
mines the values of Lg =0.35 and that d, =0.02 gives
—0.012<k,<0. The symmetry of the PHAN allows
also the second estimate 0.988 <, < 1.0, since the values
+]1—2«,] and —|1—2x«,| correspond to the same struc-
ture. Note that «, is deeply affected by the value of d,,.

Our estimate of k4 is consistent with the NMR mea-
surements in confined geometry by Allender, Crawford,
and Doane [26], who obtained for 5CB, according to our
notations, 1+x,=1.0%0.6, i.e., k,= —0.6-0.6.

In order to recover the experimental results for the
droplets with nonflat boundaries, it is necessary to take
into account a possible breaking of the azimuthal anchor-
ing degeneracy at the upper surface, due to the so-called
geometrical anchoring [4,21]. Really, for a nematic film
with parallel upper and lower surfaces, all the horizontal
orientations of the nematic lines which keep the same po-
lar angle 0 at the film surfaces but different azimuthal an-
gles ¢ have the same energy. However, this physical de-
generacy can be removed by the geometrical factor,
namely, by the boundary curvature and the gradients of
the film thickness d. Let us consider this point in greater
detail.

B. Geometrical anchoring
at the inclined air-nematic interface

In experiments with nematic drop placed on the
glycerine surface we deal with the so-called wetting re-
gime [22], when the liquid crystal forms a film of some
profile d (r). The dependency of the film thickness vs the
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FIG. 9. Threshold thickness for the HAN-PHAN (a) and for
the P-PHAN (b) transition as a function of «, for L4 =0.7 um
and L, ranging, with a step of 0.05 um, from 0.20 (curve a) to
0.45 um (curve B).

distance r between the film center and the point of obser-
vation is very complicated to describe and measure even
for the simplest case of a usual liquid drop spreading on a
rigid surface, see, e.g., the review article by de Gennes
[23]. Using the liquid crystal instead of a simple liquid
and a fluid (glycerine) substrate instead of a rigid one, the
situation is not improved. However, one could expect
that the nematic film will also consist of two different
parts: the central macroscopic part, which is spread by
the Laplace pressure due to the curved interfaces and a
thin precursor part of submicrometric thickness, which
extends ahead of the spreading drop and whose thickness
is governed by long-range forces, see, e.g., [24]. The sin-
gle point of our interest here is the evident fact that the
inclination angle ¥ of the upper nematic interface with
respect to the lower one strongly depends on the distance
r between the film center and the point of measurement:
y is exactly O for r =0, approaches zero in the precursor
tail, and takes some maximum value ¥, in the intermedi-
ate region between the macroscopic and the microscopic
parts of the film (see Fig. 3). The question is—how will
the director line be oriented in this intermediate region?
For the sake of simplicity let us assume that (i) the lower
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interface is flat and (i) the polar anchoring is strong
everywhere, thus the angles 6, and 6, between n and the
upper and the lower surfaces, respectively, are constant.
Due to the isotropic nature of the ambient media, the set
of the easy directions of n at both surfaces is represented
by two cones of revolution with symmetry axis coincident
with the normals, wvyv,, and with cone angle
w/2—0y,m/2—0,, respectively—see Fig. 10(a). In the
so-called one-constant approximation for the density of
the elastic energy, Eq. (1) in the absence of saddle-splay
gives

f=§[(divn)2+(curln)2] . (1)

As shown in Ref. [25], the tilt angle 6(z) is a linear func-
tion of the vertical coordinate z,8(z)=6,—az, where
a=(0,—6,)/d and z=0 at the upper surface. For the
case of parallel interfaces the director distribution reads

n,=sin(6,—az) , (24)

n,=cos(6y—az) ,
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FIG. 10. The physical degeneracy of the azimuthal orienta-

tion in the HAN film (a) is removed by the inclination of the
film surface (b).
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and the curvature elastic energy per unit surface of the
film is F=Kda?/2. However, with nonzero tilt ¥ of the
upper surface [Fig. 10(b)] the new curvature ' is deter-
mined not only by the polar angles 6,,6,, but also by y
and the azimuthal angle ¢, which, as already stated, is
measured in the horizontal plane between the direction of
the thickness gradient and the projection of n; for small
tilts we have

a'=(0,—0,—vy cosd)/d . (25)

Taking into account in the distribution (24) the azimuthal
dependency of the curvature (25), one obtains from Eq.
(1') the azimuth-dependent elastic energy of the film with
nonzero tilt of the upper surface: F'=F+ W,, where the
geometrical anchoring is

K | y%os?
w,=% lz—ﬁ—(eo—el)ycow . (26)

Thus the physical degeneracy of the azimuthal director
orientation turns out to be removed when the film sur-
faces are mutually inclined.

The profile of the geometrical anchoring energy strong-
ly depends on the ratio p=(6,—6,)/y (see Fig. 11), and
results in an interesting behavior of the elastic energy.
As one deduces from this figure, the equilibrium easy
direction ¢, for the nematic lines which is imposed by the
“geometrical” anchoring varies from ¢,=x7/2 for p=0
(similar boundary conditions at both surfaces) to ¢,=0
for p> 1 through some intermediate values 0 < |¢0l <m/2
forO<p<l1.

One should keep in mind that in the real situation the
polar anchoring is finite and the values 6, and 6, depend
on the film thickness d in such a way that 8,—0, is small-
er in the thinner part. Thus p and the easy direction will
vary with r in a very complicated way due to the non-
monotonic dependency y(r) and the monotonic depen-
dency (6,—6,) on d. However, for the thick part with
(68— 6,)=70°—80°, one should expect that p>1 and the
easy direction is coincident with the thickness gradient,

YT rivr7/rVmrr17rrrvrr T TagT

Reduced geometrical anchoring

-1 BN WO T [N NN TN W S U S W U S B A N

-100 V] 100
Azimuthal angle p (deg)

FIG. 11. Reduced geometrical anchoring W,d/Ky? vs az-
imuthal orientation ¢ for different values of ratio p=(6,—6,)/y
ranging from O to 1.3.
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i.e., with the horizontal axis x normal to the film edge.
This corresponds to the experimental observation: n,,
and the x axis are parallel in the vicinity of the critical
thickness d,. The geometrical azimuthal anchoring
strength has been previously estimated for d ~d, to be
L 4=~10-100 um [4].

As we can see from our experimental results, the
threshold d, measured for nonflat droplets (d, $0.15 um)
is larger than d, measured for the flat films (d, $0.02
pm). This difference is a natural result of the nonzero
geometrical anchoring in the case of a nonflat profile.
Taking for the values of L, and k, the values obtained in
the flat geometry, and analyzing the threshold d, as a
function of the geometrical anchoring L4, (that is un-
known close to d,), we estimate the last parameter to be
10 um. In this case the value of d, is greater for nonflat
droplets than for flat films in accordance with experi-
ment.

V. CONCLUSION

The appearance of a PHAN configuration of splay type
(due to the tilt anchoring strengths) was considered,
against the usual HAN structure. For the sake of sim-
plicity, the bulk elastic isotropy was assumed. The
behavior of the PHAN-HAN threshold d, and of the
recovered PHAN-P threshold d, were predicted theoreti-
cally vs the surface-to-bulk elastic ratio «, and the tilt

and azimuthal anchoring strengths.

Experiments were performed on films and droplets of
SCB wetting a glycerine substrate. The PHAN pattern,
appearing in both cases, allows a measurement of d(f3),
providing the critical values. By assuming L, at the
5CB-air interface at room temperature to be kept at the
same value (2 um) as obtained in Ref. [9] for the same ex-
perimental conditions, two crossed best fits at both
thresholds provide an estimate of L, at the 5CB-
glycerine interface and of the saddle-splay-to—bulk ratio
k,=K,,/K. The latter value was found to be
ky=—0.012-—0.0, consistent with the only measure-
ment of k, in the same material reported in the literature
[26]. Furthermore, second and third domain generations
of PHAN as well as square lattices of point defects were
observed: a theoretical model explaining such a
phenomenon (and the influence of K,,) is almost com-
plete.

Moreover, experiments with 5CB cells in the presence
of a magnetic field either preventing or favoring the
PHAN configuration are under way and will be published
elsewhere.
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FIG. 4. Small 5CB drop, viewed through crossed polarizers.
The PHAN-P line, where the cell thickness is d,, is close to the
boundary of the drop. Bar length is 125 pm.



FIG. 5. Precursor of a big SCB drop, viewed through crossed
polarizers. The PHAN-HAN line, where the cell thickness is
d,, is towards the drop center. Bar length is 150 um.



FIG. 7. The nucleation of the secondary domain generation
with common direction x’ which is inclined with respect to x:
texture. Bar length is 200 pm.



