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Abstract. - The first-order structural transitions caused by an external magnetic field or by a 
surface anchoring are considered for a srnectic A liquid crystal in the restricted geometry of a flat 
cell. The transition occurs by nucleation of focal conic domains. The free energy of the system is 
calculated as a function of the order parameter p = domain radiuslcell thickness for finite value of 
the splay (K) and a saddle-splay (#) elastic constants and the anchoring coefficient. For small 

p the behavior of the system is defined by the balance of the stabilising elastic term and 
destabilising field (or anchoring) term. Homogeneous nucleation from ideal uniform state is 
hindered by high energetic bamer unless R is positive and comparable (or larger) than 
K. A few possible scenarios of heterogeneous nucleation have been considered, among them the 
nucleation at local layer undulations and the nucleation at field-induced dislocations. The most 
effective and general scenario is the nucleation at distortions (dislocations) caused by bulk or 
surface irregularities. The expansion of the domain ( p  B 1 ) is governed by the balance between 
the field and surface anchoring and does not depend directly on the elastic- constants. The 
saturation field that provides the domain expansion can be smaller than the threshold field for other 
known mechanisms of the SmA instabilities. 

I 1. Introduction. 

The equilibrium structure of layered liquid crystals, such a s  the smectic A (SmA),  consists of a 

I 
stack of flat parallel layers. The  rodlike molecules of each SmA layer orient in the direction 
normal to the layers. To change the layer thickness usually requires energies considerably 

! greater than needed to  curve the layers [ I .  21. Similar properties appear in lyotropic lamellar 
phases composed of surfactant layers and in cholesteric liquid crystals with a helical pitch 
much smaller than the characteristic curvatures of the structure. 

I 
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If the layered liquid crystal such as SmA is located in a boundered volume or undergoes an. 
action of an external field, a contradiction arises between the condition of the constant layer 
thickness and an extenial orientation force. -1 ypically these frustrations relax through one- 
dimensional rather than two-dimensional defects. The singularities have a special shape (e.g., . 
conjugated pairs of ellipse and hyperbola) and serve as a frame of the focal conic domain 
(FCD). Within the FCD the SmA is curved in such a manner that the layer thickness is equal to 
the equilibrium value everywhere except along the vicinity of two conjugated lines. In the 
simplest case of the torical FCD (TFCD) the defect pair.is represented by a circle and a straight 
line passing through the center of the circle. The region of deformations is restricted by the 
circular cylinder. It is remarkable that the layers are perpendicular to the cylinder surface. Thus 
the TFCD can be smoothly embedded into the matrix qf parallel layen. The reason for its 
appearance can be the tendency of the substrate or an external field to orient the layers 
normally to the substrate : this orientation is brought about by the TFCD structure in the base 
region (Fig. 1). 

Fig. 1. - Torical focal conic domain (TFCD) with base located at the middle plane of the cell (a) or at 
the surface of the cell (b). The smectic layers are folded around circle ; this circle as well as the line of 
rotation symmetry are two linear defects in the director distribution. The domain is smoothly embedded ': 

into the matrix composed of flat horizontal layers. In the central part of the domain the layers are 
reoriented by angle 7r12 in comparison with the outside layers. The region of deformations is restricted by 
the cylindrical surface with radius a. 
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When the FCD appears in a sample as a result of competition between bulk curvatures and 
boundary conditions, it turns out that the radius a of the stable FCD has to be larger than some 
critical value a,,, [3, 41. This critical radius is defined roughly as [3, 41 

qcrit -KJIAuI * 

where K is a splay elastic constant and A u  is a surface tension anisotropy. Typically the critical 
size is macroscopic (0.1-10 pm). The smaller FCD are unstable because the curvature of layers 
is too large to be compensated by the surface energy gain. 

Numerous experiments (see, e.g., recent ones [3-81 and review [9]) show the possibility of 
transitions between a domain-free state (a = 0 )  and focal conic textures composed of FCD 
with macroscopic size (a >a,,,). The mechanism of the << tunneling u of these macroscopic 
defects through the region of instability (0 < a < a,,) is unclear.. The problem'is similar to that 
considered for the field induced first-order point-ring defect-transition in nematic droplets that 
also looks formally like an under-barrier tunneling [lo]. 

Experiments [3-81 which clearly show the occurrence of macroscopic TFCDs from 
<< nothing >> motivated us to discuss the nucleation of these objects. Our consideration is 
restricted to the most popular and important (because of possible applications) geometry of a 
flat smectic A cell of finite thickness where the TFCDs occur due to the action of the external 
field or the anisotropy in the surface tension. The thermal generation of TFCD's from the 
supercooled nematic or isotropic phase has been observed experimentally and treated using 
semiempirical heterogeneous nucleation theory by Chou et & I .  [11 I. This process is defined by 
cooling rate and the temperature of supercooling of high-temperature phase [ l  1).  In our study 
the TFCDs are supposed to nucleate as a result of field or surface action in the whole 
temperature region of the SmA phase. The  pa^-ticular case of field-induced bulk nucleation was 
briefly discussed in reference 1121. We adopt the geometrical approach [ 13) to describe the 
TFCD, which implies that the TFCD size is larger than the layer thickness. This approach is 
justified by the fact that the scale of interest is macroscopic (as defined, e.g.. by the ratio 
Kl(Au I ) .  

In section 2 we present a geometrical description of the problem and discuss the possible 
driving forces of the TFCD's nucleation. Section 3 contains general remarks on the scaling 
behavior of the TFCD's energy while section 4 is devoted to exact calculation of this energy as 
a function of the domain size, cell thickness and material constants like elastic moduli and 
surface tension anisotropy. The results of the section 6 allow us to discuss the behavior of the 
system for two limiting regimes : large << order parameter >> @ * 1 ) which is chosen as a ratio 
of the domain radius to the cell thickness, section 5 ,  and small order parameter ( p  4 1 ), 
section 6. The appearance of the TFCD is the first-order phase transition. The barrier between 
the uniform and the domain states turns out to be too high to be surmounted by the thermal 
fluctuations. To explain numerous observations of the TFCD's nucleation we consider 
different mechanisms that can help to overcome the difficulty : the Parodi's dislocation 
instability (Sect. 7). the Helfrich-Hurault undulation instability (Sect. 8) and the heterogeneous 
nucleation at the bulk or surface irregularities of the cell (Sect. 9). 

2. Geometry of TFCD. 

, are 

The system under consideration is a flat sample of thickness h restricted by two Horizontal rigid 
plates. In the initial state the smectic layers are oriented parallel to the plates and the director n 
is oriented vertically. This orientation can be achieved either (a) by special (homeotropic) 
treatment of the plates or (b) by a magnetic (H) or electric (E) field applied along the vertical 
axis Z, if the preferable surface orientation is tangential but the SmA possesses positive 
diamagnetic (AX) or dielectric ( A E )  anisotropy. The situations (a) and (b) differ in the driving 
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force of the TFCD appearance. In the (a) case the TFCDs are caused by the action of the 
vertical field when AX < 0 (or A& < 0). It is a field-driven transition. The second scenario is an 
anchoring-driven transition between the field-oriented homeotropic state .and the TFCD state 
which occurs when the surface tension coefficient for tangential orientation (a1 ) of molecules 
is smaller than the correspodding coefficient for the tilted or homeotropic (a, ) orientation 
(Acr = cr, - cr, < 0) and when the applied field is reduced. 

. 
Both scenarios of nucleation imply the appearance and growth of the TFCD embedded in the 

matrix of horizontally oriented layers. In principle, the circular base of the TFCD can nucleate 
at the plate surface or in the bulk of the system or even outside the sample. The last geometry of 
a << virtual >> circle was suggested by Steers er al. [I41 and developed by Fournier [I51 for SmA 
film placed in between two isotropic media. This situation deserves separate consideration, but 
here we will restrict ourselves to surface and -bulk nucleation, in accordance with the 
experimental observations available [3-8, 161. 

Let us consider an analytical description of TFCD following KICman's model [13]. The 
smectic layers are distorted inside a cylindrical volume with radius a and height h. The two 
principal radii of curvature, R ,  and height h. The two principal radii of curvature, 
R1 and R2 are different in sign : 

I 

here r is measured along n and varies in the range [0, r,,] ; 8 is an angle between the axis 
Z and n, varying in the range [0, n 1 2 ]  (Fig. 1). To complete the description of the axially 
symmetric TFCD, one should introduce . also the azimuthal angular parameter 4 ,  

f; 0 =s 4 s 2 n, and the infinitesimal area of the layer in coordinates (8, 4 )  : 
f ;  . - . ,' 

d S = r ( a - / - s i n  8 ) d 8 d 4 .  

3. Energy of TFCD : general remarks. 

The free energy density of the smectic A subjected to a magnetic field H should contain elastic, 
magnetic and surface terms. The elastic energy per unit volume reads as [ l ,  21 

where the first term is associated with the mean curvature of the layers and the second with the :- 
Gaussian curvature, possessing modules K and k, respectively. The second saddle-splay term 5 

has to be considered in any modification of the structure that involves a change in the topologY '$ 
of the layers. Such is the case with TFCD nucleation, which requires the appearance of a-! 
negative Gaussian curvature [16]. The third term deals with dilation of layen : B is $ 
compression modulus that describes the elastic resistance to changes 6 in the layers thickness 'T  
d. 

Elastic constants in (2) are related, B - K I A  2, where A  is a characteristic length; 
A  - d (d - 30 A )  far from the SmA-nematic transition. As a result, the curvatures with energy - KL are preferable than dilation (- f3L3) for macroscopic lengths L. Therefore the geometry of 
TFCD, where the layers remain equidistant by definition ( 6  = 0 everywhere except two lines), 
seems especially appropriate to be responsible for structural transformations. 
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The density of diamagnetic coupling energy is [ I ,  21 

and can be replaced by a similar expression for dielectric effect. 
TFCD violates the homeotropic orientation at the cell plates (Fig. 1) ; thus the surface term . 

f ,  that depends on the polar angle 8 should be taken into account. The question of the specific 
form of the function f ,(6 ) is one of the key questions in the physics of liquid crystals that 
remains unsolved even for a nematic phase. 

The simplest form that describes the behavior of the surface energy of the. nematic in the 
vicinity of the equilibrium orientation 8,, has been proposed'by Rapini and Papoular [17] : 

Here W > 0 is the anchoring coefficient whi5h can be considered as the work needed to rotate 
the director from equilibrium orientation 6 = 0 the actual one 8 [17]. For nematics 
W - - 10- ' )  erg/cm2, i.e., it is much smaller than the isotropic part f S o  of the surface 
tension, f  ,,, - 1 - lo2 erg/crn2. 

SmA might differ in anchoring properties from the nematic phase because of the layered 
structure (Fig. 2). Tilted orientation of the SmA requires some kind of << melting N to fill the 
space in the vicinity of a rigid plate. Figure 2b shows triangular parts of the space that cannot 
be filled with rigid layers. These triangles can be considered, e.g., as dislocation cores. Two 
extreme situations can be imagined. In the first case the plate is flat or covered with rigid 
surfactant molecules that keep one or the first few SmA layers in a frozen homeotropic 
orientation. Then the filling can be provided only by G melting M of the SmA structure. Since 
the number of layers crossing the boundary is - (sin 8 1, one could assume that f, - W (sin 8 1 
rather than f, - W sin2 6. The value of W in this case can be relatively high, of the order of 
(10- ' - 10) erg/cm2 [IS]. Moreover, f, can be also a nonrnonotonic function of 8,. The 
nonmonotonic behavior can be expected, for example, at an absolutely flat surface. Tilted 
orientations 6 # 0, n-12 require the surface (< melting >> of layers ; in contrast, normal 
(6 = 0)and tangential ( 8  = 7r/2) orientations do not imply melting and thus can correspond to 
two minima off ,(8). In this case the anchoring coefficient W describing small deviations from 
0 = 0 or 6 = n-/2 does not coincide with the surface anisotropy Au ; one can expect that 
W * Au. Another possibility can be brought about by flexible surfactant molecules. If the tails 
of these molecules adopt different tilted orientations and conformations, they can fill the parts 
of the space that are not filled with SmA layers. The energetical cost of this filling is defined 
mainly by the conformational energy of the surfactant molecules and can be significantly 

Fig. 2. - Schematic difference in the anchoring for nematic (a) and SmA phase (b). Tilted SmA layers 
fill the boundary region (triangular pans) perfectly. 
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smaller than Bd. Moreover, fs in. this case is not obliged to be related to the number of layers 
and can be close to sin2 8 law. In our calculations we assume the following representation of 

f s  : 
f,= U, + AU sin2 8 ;  ( 5 )  

C 

f, is minimal for 8 = 0 when A u  =- 0 and for 8 = 7rI2 when A a  -= 0. Unfortunately, there are 
only a few experimental estimations of A u  for SmA [3-5, 7, 19, 201. For a SmA-isotropic 
phase interface A u  - 10- ' erg/cm2 [7], while for a SmA-water interface AU - 
2.5 x erg/cm2 [19]. For similar ~ m ~ - g l ~ c e r i n e  interface A u  - erg/cm2 [4], but for 
the SmA in contact with the glycerine-lecithin mixture A u  - 3 x erg/cm2 [3]. Hinov [20] 
has estimated A u  - 4 x erg/cm2 for SmA at SiO-coated. glass plate. In principle, 
A u  can range from low values - 10- ' )  erg/cm2 (measured also for nematics) to (1-10) 
erg/cm2 [18]. 

To describe the process of the TFCD appearance and growth one has to calculate the free 
energy F of the TFCD taking into account the restricted geometry of the cell. The necessity of 
exact calculations of the energy as a function of the cell thickness can be illustrated by two 
extkme situations (shown in Fig. 3) for the field-driven bulk nucleation. 

ia ' 
4 .t b - 

Fig. 3. -The structure of the smectic cell with the torical focal conic domain for two extreme situations: : 

the radius a of the domain is much smaller (a) or much larger (b) than the cell thickness $, 
h. The small domain does not change significantly the boundary anchoring : maximal angle of inclination '' 
is (2 ulh) a I ; the volume of distortion is - (1'. In contrast, the large domain occupies the volume f. - ha\nd the surface orientation of molecules is practically tangential. 
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;s In the first case (Fig. 3a) the domain radius is much smaller than the cell thickness, 
1 f a 4 h. The deformations of layers are restricted by the region of volume a' and practically do 

not change the orientation at the boundaries (at the bcundary angle 8 - alh is small). In 

5 )  
accordance with equations (2) and (3). the elastic term is - Ka and the gain in the magnetic 
energy is - A x  Ha3. Thus the total energy integrated over the volume e3, 

does not depend on the cell thickness in the first approximation. 
A completely different situation occurs when a s h (Fig. 3b). Now the coupling energy with 

the field changes the scaling behavior, because the volume of prefered horizontal orientation of 
molecules is ha2 rather than a3. One should consider also-the'surface term A u  a2, which is 
brought about by almost tangential orientation of molecules at the boundaries. The elastic 
tern, however, will be again defined mainly by the radius of the base, - Ka. Thus the total 
energy scales as 

F - Ka + Au a 2  + AX H2 ha2,  (7) 

and therefore describes a completely different situation in comparison with equation (6). 
Equation (7) suggests that the growth of the TFCD with a s h is defined mainly by the 
competition of the surface and the field energies. Thus the <$saturation u field that provides the 
unlimited growth of the TFCD and is expected to bk measurable in experiments as 
cc homeotropic - to - focal conic domain texture transition threshold w ,  is thickness- 

I dependent, H, - 11 &. 
As follows from the consideration given above, to describe the behavior of the focal conic 

domains one should use proper expressions for their energy as a function of the system size. 
Unfortunately, up to now the calculations of FCD energy have been restricted by the cases 
where the system is infinitely large [I31 or by special geometry of oily streaks [16]. The 
determination of F as a function of a ,  h and other parameters like H and 4 0  is one of the main 
purposes of this article. 

:$: 
'2 . 

a 1 4. Free energy of the defect formation for arbitrary domain radius and cell thickness. 
. ~ ,. . .. ,~ . 

; ..-<.:* 
; .I F3: 
; f';s,.. The instability consists in the appearance and growth of the TFCD with variable radius 

-, \%, .,). 

a in the matrix composed by parallel layers. The free energy of the domain formation is 
d..;. 

f? .@ 
expressed as the difference hF in the total energy of the defect state F = (F, + Ff + F,) and 

~~t;;? the initial uniform state Fo = (F,. + Ff,  + F,, o). To obtain F and Fo, one should integrate 
equations (2) and (3) over the domain volume, and (5) over the corresponding surface area. 
The energy of the uniform initial state of the volume r a 2  h is composed of the field and surface 
contributions : 

F o =  - r ~ ~ H ~ a ' h / 2 + 2 r u ,  a'. : . . (8) 

The finite sample thickness restricts the volume of integration and thus the values of 
r. It is convenient to subdivide the cylindrical region into a conical volume I and a residual 
axisymmetrical volume I1 (Fig. 1). If the TFCD is located at the boundary, then for the region 1 

5 s r s alsin 8 - 6 , arctg (alh) s 8 s m12 , (9 )  

while for the region 11 

5 s r =s hlcos 61 , 0 5 0 s arctg (alh) ; (10) 

here 6 is a cut-off of the elastic energy integration (close to the smectic coherence length), 



JOURNAL DE PHYSIQUE I1 

Conditions (9) and (10) define the core of the circular line as a cylinder with constant radius 
6 ; the straight defect line has radius - 6 sin 8 gradually decreasing from 6 to 0 as one moves 
away along the line from the TFCD's base (Fig. 4). The last assumption is reasonable, because 
the angle of molecular disorientation in the core of the straight line decreases with distance 
from the base (Figs. 1, 3 and.4). 

The cases of surface nucleation (the circular base of the TFCD is located at the boundary) 
and bulk nucleation (with base in the middle plane) should be considered separately, because 
they are accompanied by different behavior of the anchoring term : for example, as shown 
below, for small domains (a 4 h)  AFSufi a Au a2 and AFb,,, cc Au a4/h2. 

SURFACE NUCLEATION. - The integration is performed separately for'regions I and 11, using 
the conditions (9) and (1 0). When the TFCD appears, the molecular orientation inclines at the 
upper surface [0 i 8 i arctg (a/h)] and becomes tangential (6 = ~ / 2 )  at the lower surface. 
One gets from equations (1-4, 5) the elastic energy of the TFCD in the assumption 

Id 

6 ;  
di ..- 
,.':t 
. L . , . :> a," 

. . 
.<-: F.' *. 3 7 .  %> 

3. ,g 
2, 
,E.. 8- 
. :. .- 4; 
.%$ 2.. 
-I., * ,. 

molecular disorientation in the vicinity of the line. 
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where 8 * = arctg (alh) and L(x) is Lobachevskiy's function [21] 

1 "  sin 2 ix L(x) = - J:lncosr dr = x l n 2  - - ( - - - ! ) ' - I  
# % = I  i 

With h + co, as expected, equation (1 1) gives results [13, 161 for infinitely large cell 
thickness. 

Equation (1 1) does not include the core energy of the defect lines as a separate term 
explicitly ; it cannot be calculated using an elastic approach since the ordering is broken at the 
core of singularities. As an order of magnitude, the core energy is - K per unit length. This 
circumstance allows one to consider equation (I 1) as a good approximation to the total elastic 
energy : the cut-off radius 5 can be chosen to include the core contribution. Moreover, as it will 
be evident from the discussion in sections 5, 6 and 9, the precise expression for the core energy 
term is not required for the description of the TFCD nucleation and expansion. In particular, 

' the expansion is defined by the surface area of the TFCD base and terms proportional to the 
length of singularities are not important. 

The surface and field contributions to the TFCD's energy are calculated as : 

and 

n- a T F ,  = - A X  H' 3 
6 

- a2h -3ah2a rc tg -+h31n  ( I  + $ )  + - a ' - a  arctg- . (14) 
h 2 h a I 

Using equations (a), (1 1-14), the free energy of the surface nucleation, A F S N  = F - F O  = 

I 
i 

F ,  + F ,  + F ,  - F ,  can be expressed as a function of the dimensionless TFCD radius t 

p = alh : i I 
i 

[; ( ~ n  - 2 )  
i 

A F s N  = ~ K h p  - In 2 + L(arcctg p ) + 2 arcctg p 
.. - ! 

. . 
-.. . ..:. ... . ., 

f 

. - - .  I 
+arctg p In p h  - 2 l n  ( I  + p 2 ) ]  . i s - .  i 

\ 

- n-Rh[rrp - 2 p  arctgp + 2 l n  ( 1  + p 2 ) ] +  ~ h ' A a [ 2 ~ ' - 2 p  arctgp +In ( 1  + p 2 ) ]  : 
. .. 

7r 
I;L.;, + - - A X  6 H2h3[2 p 2 - 3 p  arctgp + i n  ( 1  + p 2 )  + ~ p 3 - p 3 a r c t g p  2 1 . (15) 

I 
t 

2. : , c:,: 
c >..> 
," 
, !y.:. ..,:.!, 
: a.. . : 

The dimensionless radius p can be considered as an order parameter of the transition. For . i 
,* - -.,.? , initial state p = 0 and Us, = 0. 1 

a:! .. -:.. .. . . . i 
..~. , .. ! 

I . 
.,.- . , .  BULK NUCLEATION.-The molecules incline symmetrically at both surfaces .; .r. 

16; ; c ,--L ! (0 s 8 =s arctg 2 p ) and the surface energy of the domain formation is :g,- 
.:%?<,. 

,+ * -..+ 
-IY: n- 

(16) . . . . 
AF,,., = - ~ ' S U  [ 4 p ' - 4 p  arctg2p +In ( I  + 4 p 2 ) ] .  

.. . 2 
.-+ :. .? 

.:.i'-: ! 
7fic .<* ..*- The field and elastic energies can be found from equations (13). (14), by multiplying the 

corresponding t ems  by 2 and making substitutions p + 2 p .  h -+ h/2 (to hold the notation of t 

..j@ 
.%.. q: 
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the order parameter p = alh). Finally, the free energy of the bulk nucleation is : 

hp 
A F B N = 2 n ~ h p [ ~ 1 n ~ + ~ ( a r c c t g ~ p ) + 2 a r c c t g 2 p  . 2  ( I n T - 2 )  + 

+ arctg 2 p In 1 p h  ' - - I n ( 1 + 4 ~ ~ )  - 2 r R h [ r p - -  
6 J X  I 

Despite the apparent complexity of equations-(15) and (17) for the free energies 
AFsN and A F B N ,  these equations have one evident advantage : they are exact for domains of 
supramolecular size and allow us to describe the behavior of the system in the whole possible 

* . range of the order parameter p ,  i-e., from P w 6th zz 0 to p 4 a. As will be shown, the 
expanded versions of AFsN and AFBN are quite simple for both small and large scales. It is 
convenient to start the discussion with graphic representations. 

Figures 5 and 6 show the variations of free energies A F  sN (p,  H )  and A F  BN ( p  , H) calculated 

I 

b 

Fig. 5. -Free energy of the torical focal conic domain as a function of the dimensionless radius 
p = alh for the anchoring-driven nucleation. The domain is supposed to appear at the surface of the cell 
due to the reorienting action of the surface anchoring when the orienting magnetic field diminishes. TWO 

different scales are shown : large p (a) and small p (b). Both plots were calculated using the same 
equation (15) for the same parameters. Different lines correspond to different values of the magnetic field. 
(shown by numbers in kGs units). 
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Fig. 6. -Free energy of the torical focal conic domain as a function of the dimensionless radius 
p = alh for the field-driven nucleation. The domain is supposed to appear in the middle of the cell due to 
the increasing reorienting action of the field. Two different scales are shown : large p (a) and small 
p (b). Both plots were calculated using the same equation (17) for the same parameters. Different lines 
correspond to different values of the magnetic field (shown by numbers in kGs units). 

using equations (15) and (17) with h = 100 Fm. K = dyn. K = 0, AX = CGS and 
Acr = - 10- erg/cm2 (anchoring-driven surface nucleation, Fig. 5) and h = 100 pm, 
K = dyn, = 0, AX = - 10- CGS and Acr = lo-* erg/cm2 (field-driven bulk nu- 

. .  . . 
cleation, Fig. 6) ; Lobachzvskiy's function here and below is calculated with accuracy up to 

-, . ~. . . 
. .. . . the first 40 terms in equation (12). using Mathematica. Version 2.1 >>, Wolfram Research. 
. .  . 

. . i  : ,,. . 
The behavior of AFsN(p, H )  and AF,,(p, H)  is illustrated for two different scales : large 

._ . 1'- 
n . .  . ...';'$: .. . . 

' 4 . ~ 1 -  

TFCDs (Figs. 5a, 6a) and small TFCDs (Figs. 5b, 6b). It is important to stress that despite 
...~ : . -  1 

-p:. 

seeming differences in the physical picture illustrated by (a) and (b) parts of the figures 5 and 
- t. .. , ~ . .  . .. .... . . . . . .  

6 ,  both parts represent the same dependencies (15) and (17) ; the only difference is the scale of 

. pictures. 
, ..:;.f . ' 

: .@&;. ; 5. Limit of large FCD. 
lius ''.;%. : 

-ell .?:;, : As already mentioned, the behavior of the free energy differs principally for p 4 1 and 

'WO .~:;. P + 1, due to the confined nature of the system (finite cell thickness). The nucleation of small 
-: ,me ~.--+ 

.:, I T -  . domains ( p  6 1 ) does not mean automatically the completeness of the transition, i.e., the 
ield . . .., ability of the domain to expand significantly (and the opposite is true : the ability to complete 
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the transition does not imply the possibility of nucleation). The statement is easy to understand 
using a field-driven transition as an example : for p 4 1 the surface anisotropy practically does 
not hinder the occurrence of the TFCD ; however, the growth of TFCD (p a 1)  can be 
suppressed because the surface term becomes more and more important for growing TFCD. In  
real experiments the transition between the initisll homeotropic state and the final focal-conic 
domain structure is supposed to be registered when the TFCD is able to expand significantly, 
i.e., just for the case p 1. The possible value of the field that prdvides this large-scale growth 
is discussed below for the field-driven situation caused by AX < 0 (Fig. 6). 

If the external field H is absent, all molecules are oriented perpendicularly to the plates 
because of A a  w 0. A F B N  has only one minimum at p = 0 and the initial state is absolutely 
stable (curve 0 at Fig. 6, where numbers correspond to the value of H expressed in kGs). As 
H increases the second local minimum appears for some p,,, # 0 (curves H = 5.6 and 
H = 5.8). The uniform state becomes unstable with-respect to the formation of the TFCD when 
AFBN(pmi,) c 0. For the moderate field, as expected, the radius of the TFCD can not grow 
infinitely : the increase of p w p,, is accompanied by the increase of energy (see curve 
H = 5.8) because of the positive surface contribution (Aa w 0 )  that becomes important 
starting with p - 1. 

Nevertheless, there is some << saturation >> field HBN, Jat, above which the radius of the TFCD 
grows infinitely. For H > HBN. sat the dependency AFBN(p ) is a negative and monotonically 
decreasing function for large p. In figure 6, HBN, s;lr corresponds to the curve H = 6.3 that 
practically coincides with the axis p .  To find HBNesat, it is convenient to make a substitution 
p + 1 1 ~  in the exact expression (17) for the free energy A F  B N ( ~  ) and expand it in the vicinity 
of E -+ 0. It yields 

where only the quadratic and linear terms are retained. Since p a 1,  equation (18) clearly 
shows that the decisive is the first (quadratic in p)  term. Defining HBN, ,,, as a field that makes 
the first term zero, one finds : 

HBN, sat = 2 ,Iz. 
Therefore, the final stage of the TFCD growth depends on the balance 5erween the field and 
surface energies rather than on the elastic energy (including core energy) ; constants 
K, i? and B do not enter equation (19). This result is easy to understand, because the central 
part of a large domain is composed of practically parallel layers that are oriented normally to 
the cell plates (Fig. 3b). With estimates used above for thermotropic smectics, 
HBN, ,,, = 6.3 kGs. The line HBN. sat = 6.3 kGs practically coincides with the coordinate axis at 
figure 6a. The AFBN(p 1 )-dependencies corresponding to H < HBN. remain positive for 
large p ,  while for H w HBNs ,, they are negative and the growth of the domain only decreases : 
the energy. b 

It is worth noting that HBN, ,,, for modest ha  is significally smaller than the threshold of two 

oth;r known instabilities : the Helfrich-Hurault undulation instability [22, 231, which consists j 
in the periodic distortions of layers in the horizontal plane, and Parodi's instability [24], which $ 
implies the appearance of the dislocation defects. In both known effects the distortions violate '; 

the requirement of constant layer thickness and thus the threshold field is defined by the :. 
balance of the field energy and the dilation energy with elastic constant B. For example, for the 
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threshold [22, 231 in the geometry with vertical field and AX -= 0 one has an 
Sect. 8, below) : 

- 
'2 rrAB 

& H = J ~ ~ A X ( .  (20) 
.. , -. . ,* .. ,..,;;, 
. . .h .j:.j2;. One obtains similar expression for Parodi's threshold (see also Ref. 1241 and Sect. 7) : 

Thus the ratios 1s < :  
ld 
:n HBN, sa HBN, sat 

p . 5 - 5 1  

w HHH HP (22) 

' e 
nt are small, - 0.02 (with A u  = 10- ' erg/cm2, A - 30 A and B - 10' dynlcm2). For strongly 

anchored SmA, the layers are broken in the vicinity of the plates and the anchoring coefficient 
D might be of the order of A B (see Ref. [18]). For this case the ratios (22) are close to unity. 
1 Y The large-scale behavior of the anchoring-driven transition is similar to that described 
at above for thefield-driven bulk nucleation (Fig. 5). If the f i l d  H (normal to the cell) is strong 
In enough, all molecuIes are oriented along H (now AX is positive) and the equilibrium state is 
t Y uniform, i.e., AFsN has only one minimum at p = 0. The macroscopic expansion of the TFCD 

occurs when H is smaller than some field HSN.,,,, defined from the condition 
AFsN(p s 1 )  < 0. It yields an expression identical to equation (19) with accuracy to the 
inversion of signs of A u  and AX : 

IY 
t s which is not a surprising result, because for large p there is no difference in geometry of 

surface and bulk instabilities (Fig. 3b). 
In concluding this section it is important to discuss the specific range of validity of the large- 

9) . 
scale description used for determination of the saturation fields such as (19) or (23). From the 
thermodynamical point-of view, any response to the external parameter variation means it 

fld - ..::, brings the system into the state 'with smaller free energy than that in the absence of such 
. :*. response. However, the critical condition for the transition between states 1 and 2 to occur can 1tS ::.<:;. 

y.... 
ral , ;;?: 

be written in the form AF = F (2) - F (1 ) < 0 only if 1 transforms into 2 directly without the 
. . 

. . . necessity of increasing the energy. The large-scale pictures (Figs. 5a, 6a) give an impression to I:;:. 

; :$-$ that this is just the case and the transition between the uniform state (no TFCD) and the state 
:s, ,:jc , .. , ..$ : with large TPCD can occur directly as an appearance of zero radius domain and its expansion 
at :?; 

. . 
until reaching the macroscopic dimension observed in experiments. In fact, as we will see in 

:or :A&, - _ 1< :I ;es . 
the next section, the two states are separated by an energy barrier located in the small-scale 

. .. ... . .., . 
:". . ;. ... . 

region, p -e 1. As the field becomes higher than HBN, ,, (field-driven transition) or drops below 
HSN, sat (anchoring-driven transition), the uniform state becomes metastable but the barrier 
Prevents it from becoming unstable. Thus actually.there are two conditions of the transition : 
first, the condition AF -= 0, and second, the ability of the system to overcome the bamer 
between the states. This second condition will be considered below. It is obvious that the real 
threshold will be determined by the condition that is more difficult to satisfy. 

Summarising, the large-scale picture is important to describe the completeness of the 
transition. It gives correct values of the threshold field if TFCD nuclei somehow have been 
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created in the system and the only problem is to provide the TFCD with possibility to expand 
and replace the initial state. However, the large-scale picture does not show the very beginning 
of the instability, does not show how the TFCD appears from << nothing D. This question 
should be considered for the small-scale limit, p a 1. 

8 

6. Limit of small TFCD. 

The free energies (15) and (17) can be expanded for small p 4 1 : 

A F  = A l p  + A ~ ~ * + A ~ ~ ~ + A ~ P ~ + - - - .  (24) 

where the coefficients A, are different for surface and bulk nucleations and thus will be 
provided by different indices, SN and BN, respectively. It is easy to check that the linear term 
A, in both cases is defined solely by rhe splay and saddle-splay elastic contribution : 

As,, 1 = Kh ( P  - 2 - KIK) , (25) 

ABN, I -; 2 a 2 ~ h ( p  - 2 - KIK), (26) 

where /3 = In (2 h p l t )  ---- Cte. (for a 6 the logarithmic dependence is weak). The anchoring 

As,., = a A o  h 2 -  a ~ h ( 3  + P  -1n f i ) .  (27) 
f ABNV2 = 4  a K h ( l n t 2 - P  - 3 ) ,  (28) 

while the field action defines the cubic terms : 

a2 
As,, 3 = - AX H~ h3 , 

12 (29) 

The behavior of the system is determined by the signs and values of the coefficients of 
expansion. It is natural to assume that in our particular problem (TFCD in the stable SmA 
phase) the linear coefficient Al is always positive, i.e., saddle-splay constant k is not too high. 
Otherwise, even in the absence of the external surface or field torques the layered smectic 
structure will be unstable with respect to the formation of the TFCDs. In fact, a similar 
instability occurs during the transition of the lamellar SmA to the anomalous isotropic (sponge) 
phase where K significantly increases [25, 161 and thus can favor the appearance of FCD. We 
will assume ff = 0. The second coefficient As,. depends both on the elastic and surface 
contributions if the nucleation occurs at the surface. If the tangential orientation of molecules is 
preferable ( A o  -= 0 ), then As,. , -= 0. For homeotropically treated samples with A u  > 0 the 
bulk nucleation seems to be more preferable and A o  enters only in the fourth term of the 
expansion. Finally, the third term Aj is defined solely by the field contribution and can take 
both positive and negative signs following the sign of Ax. 

The dependies A F  ( p ,  H )  for small p (Figs. 5b, 6b) clearly demonstrate the first-order 
character of the transition. A F  (p ) goes through a maximum A F  * = A F  (p *) at some critical 
radius p *, that defines the critical TFCD-nuclei. Only the TFCDs of a sufficiently large radius 
p > p * transform the metastable uniform state into the stable defect state. The TFCDs with 
p < p * (embryos) are unstable and will decay. 

. .- SF; 
$.?>. .. 
i .~ 

5 L i. 
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n e  energy banier that separates the two states is brought about by the positive leading 
term in the expansion (24). This term scales practically linearly with p and this explains 

%q,y the banier always exists and is located in the region of relatively small p : the driving 
force, in accordance with equations (27) and (30), contributes only to the quadratic 

or even cubic (field) terms. 

qestion in greater detail for the TFCD. 
The application of general nucleation theory (see, e.g., [28]) to the formation of FCD and 

- -  similar problems, such as nucleation of vortex loops in superfluids or dislocation loops in 
%;% 1 

solids and smectics [29], yields as a basic nucleation rate equation 

G = Go exp [- A F  *lkB TI , 
'26) 3 

where G is number of nuclei per unit volume and unit time and Go = go n is a characteristic 

ring . rate for microscopic processes, defined by some kinetic coefficient go and by the number 
n of molecules per unit volume. The kinetic coefficient go is estimated crudely [29] as (sound 

I velocity)/(molecular dimension). Taking the minimal rat6 of nucleation G - 10- ' s- '  cm-3 
127) . : and estimates used by Pershan and Prost [29] for therrnotropic smectics, 

(28) go - (lo5 cm s- '/2 x 10- ' cm) and n - 3 x lo2' ~ m - ~ ,  one finds that the nucleation will be 
. observable if A F  * s 80 k B  T, or AF * s 3 x 10- l2  erg. Unfortunately, as shown below, the 

I typical barrier of TFCD nucleation turns out to be higher. 
For a qualitative understanding it is sufficient to consider the most favorable situation for the 

(29) surface-driven transition with the lowest energy barrier AFzN, when the field is completely 
removed, ASN, = 0. Then 

s of , 

mA I 
igh. ' I 

1 or, for I A u  I hlK s= 1 (which is again the most favorable condition), 
lilar c. 
nge) :- / I 
We 5 

-face 
es is 
the 
the 

take 

~rder 
tical 
tdius 
with 

With typical K = dyn, = 0 and A u  = - erg/cm2 one has AF& - erg, i.e., 
M,*, s- 80 k B  T . The desired AF& - 3 x 10- l2 erg can be achieved only for systems with 
A u  as high as - (- 1) erglcm2. Of course, nonzero (and positive) R can facilitate the 
nucleation, but up to now high values of have been reported only for lyotropic smectics in 
the vicinity of the lamellar to anomalous isotropic phase [16]. 

The same barrier problem appears for field-driven nucleation. We again assume the simplest 
situation : the field is strong enough, ABN. 21 Jw = G 4 1. The barrier, located at 

(35) 
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~ 3 1 2  
BN. 1 - 8 n- iY3I2 ( /3 - 2 - RIK l3I2 

AF&= ( 2 - & G + w ~ ) =  (36) 
3 JAB,. 3 I 'I2 

and remains quite high to be'surmounted by fluctuations : AFgv - 3 x 10- l2  erg only if tho 
field is as high as H = Hbh,, - lo5 kGs for thermotropics or 200 Gs for ferrosmectics 
described in [6] .  Both estimated fields are much higher than H,,,. Here and below 
Hbarrier is defined from the condition A F  *I80 kB T = 1. 

As follows from the consideration given above, the assumption that the field H - H,, 
providing the expansion of the TFCD can also nucleate the domain from << nothing >>, is rather 
exotic one. Nevertheless, the nucleation of FCD is-observed experimentally not only in 
ferrosmectics but also in thermotropic materials for quite modest values of fields or expected 
A a .  There are no special reasons to assume that this nucleation in all cases is explained by 
large K : at least for thermotropics it is hard to expect that K is significantly different from zero. 
The problem is thus to find the general path of the macroscopic tunneling. An apparent solution 
of this problem is an assumption that the nucleation starts from a nonuniform state rather than 
from the ideal uniform structure considered above. This assumption was used by Chou et al. 
[ l  I ] ,  Hinov [4] as well as by JAkli and Saupe [7] to explain experimental findings. Among 
them is the formation of the TFCDs at the same particular sites of the cell plates, connected 
probably with local inhomogeneities [ l  1, 71. In fact (see Ref. [4]), one can find this idea in the 
article of Friedel [30] : << ... it seems clear also that defects - translation dislocations and focal 
conics - strongly interfere with the oscillations of the layers, and stabilise the buckled state, 
in a way that has not been completely elucidated >>. 

While not pretending to elucidate the question completely, in the remaining part of this 
article we will consider the possible ways of TFCD generation from the distorted state. In the 
case of field-induced nucleation the first idea is obvious : to find other mechanisms of 
distortions and then consider the possibility of TFCD generation by these instabilities for 
higher values of the driving force. Two types of instabilities of the SmA are known : the 
Helfrich-Hurault undulations [22, 231 and the Parodi's transition [24]. Both models describe 
the field instability but do not describe the surface-induced instability. The Helfrich-Hurault 
effect is a second-order transition : the layer tilt grows continuously from 0 to some finite value 
when H a H H H .  In contrast, Parodi's effect implies the finite tilt of layers when the field is 
higher than some critical one which we denote H p -  The tilt is caused by the creation of defects 
such as dislocation walls. Since this mechanism is formally similar to -the nucleation of the 
TFCD, it will be considered first. 

7. Nucleation as a result of Parodi's instability. 

Let us briefly reconsider the main features of Parodi's effect [24] and demonstrate that it is a 
first-order phase transition and thus requires special consideration of the barrier problem. 

As was predicted in reference [24], the field-induced transition occurs as a reorientation of 
the molecules in the central part of the cell with corresponding appearance of grain boundaries + 

(periodic pattern of disclinations and dislocations) that allow folding of the layers. f i e  defects 
are located in the vicinity of the plates. The energy of the grain boundary was considered in 
terms of a continuous density l ld  of dislocations with self-energies - K (d is the layer's 
thickness) [24]. The gain in the field energy due to the finite layer tilt 8 can be estimated as ; 1 F f  - - Ax H~ ho2per unit area. while the elastic energy cost of two grain boundaries providing 

2 
this reorientation is F, - 2 KOld. For the sake of simplicity we will neglect a positive s + 
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saturation field for 
. e - 1 can be found from the condition F ,  + Ff = 0 which means the equality of the energies of 

(37) 

ression is valid for 

. '+-A. - 
.j - 

As was shown in section 5, H p  is higher than H,,, for TFCDs, if h a  < dB, equation (22). 

w , -;gz.. Nevertheless, the physical meaning of H p  is analogous to that of H,,, : it defines only thefinal 
her .:;& , in.. .$q,. 

stage of the transition, when 0 and the area of the grain boundary are not smail. Thus here one 
y - . - has the same problem with the very beginning of the process as in the case of TFCD : for small 

ted ;$! 
by' .+ii. 

I9 the decisive term is just the positive elastic term and the transition should be hindered by the 

, , 
~otential barrier. This barrier is even infinitely large when the infinitively long linear 

:ro.' :;?i;: 
.&:<. 

dislocations are considered. To provide the finite barrier, one should modify the model and 
ibn , . .;.;: 

d ,?: 
assume that the dislocations nucleate as closed loops with finite radii. Let us consider just one 

:'>: 
., - .  . . dislocation loop that occurs in the horizontal plane in response to the vertical field. 

',l. ' , -1:. I 

The elastic energy of an isolated dislocation loop with small radius rd 4 a, was estimated 
)ng . 1 
ted x. as [29, 311 - T A  Bd2 r d l t .  A gain in the magnetic energy is roughly - - AX H~ e 2  x (volume 2 . . 
the --I 

I 

- of distortions). Here 6 = dlrd'; the volume of distortions kreated by the loop can be estimated 
cal I- taking into account that the penetration length of deformations along the vertical axis is 
ite,. - - 2 r$A [ l ,  21, and the disturbed horizontal area is - ~ r i .  Thus the total energy of the loop is 

his - 

the 7. 
of "- 

for which leads to the critical radius 
the -: 
ibe . -  

'P. 

lult - 2- 
" i;< lue ,-53. 

is .;a:: 
.".- and the barrier 

(two equivalent representations have been chosen to discuss the temperature behavior of 
AF&,, see below). With A - 6 - d - lo-' cm, B - KIA 2, the barrier AF&, can be reduced to 
the value - 3 x 10- l2 erg only for fields as high as H = Hbarrier - lo4 kGs. which is two orders 
of magnitude higher than the value of H p  defined by equation (37) and thus is hig?. , er than 
Hsat- 

One can argue that the last scenario with single dislocation does not describe correctly the 
Very beginning of the instability and that in fact the transition is preceded by the appearance of 
the grain boundary composed of a set'of circular loops. It  means that the layer tilt is large- 
(0 - 1 rather than 0 = dlr,) from the very beginning of the instability, but it takes place in the 
small region with area - ,rrr2. Unfortunately, this scenario does not improve the situation with 
the barrier. Really, the elastic energy of the circular grain boundary with small radius 

1 2 r2 r ( r  < t%) is - 2 K ~ ' I A  while the diamagnetic energy is - - AX H2 x T? x - - 
2 A 
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r4 
.rr AX H' - . Extremization of the total energy with respect to r yields an expression for the 

A 
energetical barrier close to that defined by equation (40) : 

K~ K3/2 B 112 
AF; = - 

T A J A ~ I  H ~ -  ~ ( A ~ I  H " .  

Therefore AF$ = A F  and the corresponding Hbarrier remains much higher than Hp.  We again 
come up with the conclusion that the transition cannot occur at H = H p .  

There is one important peculiarity in the behavior of AF&, and AF; : both depend on the 
dilation elastic constant B ,  in contrast to the analogous quantities AF&, for the TFCD, 
which are only K-dependent. Therefore when the temp.erature T increases towards the SmA- 
nematic transition, A F &  and AF$ diminish 'because of the decrease of B = KIA2 
(K, ,$/A and d are practically temperature-independent, but A and ,$ grow with T [I ,  21). Recent 
experiments [32], however, have demonstrated that in fact B cannot decrease below some 
limiting value B,,,, equal - lo7  dyn/cm2 for typical thermotropic substances such as 8CB or 
80CB. Calculations of the lowest values of the AF&, and AF$ with B = Bmh = 10' dyn/cm2 
show that AF&,/8O kB T - 1 and @$,I80 kB T - 1 (i.e. the fluctuation-induced nucleation is 
possible) starting only with Hbarrier - lo3  kGs. Even in the close vicinity of the phase transitions 
the barrier height still defines the real threshold of the nucleation of dislocations and, 
consequently, the expected nucleation of TFCDs ihduced by these field-created dislocations. 
The situation can be changed only for very thin samples, h =s 1 pm, where in accordance with 
equation (37) H p  can be as high as lo3 kGs and thus comparable to or even higher than 
Hbarrier. Of course, the principal possibility of Bmi,  < lo7 dyn/cm2 and thus Hbarrier < H P  should 
not be given up. 

The dislocation model gives an additional illustration of the need to consider two di'erent 
conditions for the nucleation of defects [lo]. The threshold H p  defined from the condition that 
the energies of the defect state and initial uniform state are equal, does not guarantee the 
transition. To initiate the instability, one usually needs higher field Hbarrier which is able to 
surmount the barrier of nucleation. The situation is similar to that with TFCDs and is also a 
direct consequence of the first-order nature of the transition. Thus the idea that the TFCD can 
nucleate at the field-induced dislocations solves the problem only partly : it simply substitutes 
the problem of AF&-barrier by the A F & -  or AF$-barrier problem. 

The next principal mechanism is the Helfrich-Hurault instability which is a second-order 
transition and thus does not imply the presence of any energy barrier. 

8. Nucleation as a result of the Helfrich-Hurault instability. 

Let us consider TFCD creation as a development of the Helfrich-Hurault (HH) instability in a 
cell with ideally packed SmA layers. This instability is described in terms of a small 
displacement u along the z-direction which is perpendicular to the unperturbed layers. The 4 
lower surface of the cell is assumed to coincide with the x, y plane. The director n can be " 

expressed in terms of the displacement derivatives u, s aulat as n = (- u,, - u,, 1 ). The free ( 
energy density f H H  associated with the layer displacement can be written in the form [2] : .C 

1 1 1 1 
f H H  = - B u , ~ + - A ~ H ~ ( u ~ + I I ~ ) + - K ~ ( A ~ I o ~ + - B ( u ~ + u ~ ) ~ .  2 2 2 8 (42) !:. 

. . $  

Here A, is the x, y-part of the Laplace operator. . . 

The HH-perturbation in an ideal sample with perfectly homogeneous surfaces is found [331 y 
to form an infinite rectangular lattice in the sample plane. However, rather single TFCD 
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ments [6-91 which indicates high sensitivity of the domain structure to any 
cell (dust particle or surface roughness). It is clear that displacement of the 
by inhomogeneities can be so strong that they themselves can cause 

e of the barrier AF* and thus be a n  actual cause of TFCD nucleation. 
nucleation can be agributed to the HH-instability only if irregularity-induced 

small in comparison with that sufficient for nucleation and so are able 
7.i just to violate the ideal homogeneity of the sample. The first case when'the irregularities are 

sidered as a mechanism of TFCD nucleation in the next section. Here we 
hen small surface irregularities are able just to initiate local HH-instability 
tion of the TFCD. 

Let us assume that some localized inhomogeneity, whose shape is close to a bump, induces 
a solitary HH-mode. It is convenient to choose the perturbation in a form' of the cylindrical 

! harmonic expansion. In the cylindrical coordinate system (r, Q ,  2) this expansion has the form 

u(r, ( o , z ) =  1 u o ( f , m , n ) [ J o ( q p r ) + c ~ ] s i n  (knz)(a,sinmp +b,cosrncp), (43) 
I. m. n 

ero-order Bessel function (Jo i s  an eigenfunction of A,);  cp, a,, 
onstants ; 4, m, n are integer. This perturbation must satisfy the following 
pper (z = h ) and lower plates (z = 0 ) and at the domain boundary 

,iht ;:s.:;:: --. .. u(z = O ) = U ( Z =  h ) = b ,  
jrtr:. - '. '$!< 

~$!:->: a,n(aD) = 0 ,  .me:..: - 
(44) 

"Id .:.*:r::,. u(aD) = 0, 
.g. ~. .- 

:=>a , *. - .,.. . 
,.$-. . where a, denotes the derivative along the direction normal to the boundary aD. Substitution of 

ent ..':.*:;.. : 
:i - equation (42) in equation (43) and integration over the domain volume makes it clear that the 

hat Q - :  
the .-'. lowest critical field HHH of the HH-effect corresponds to the harmonic with n = 1, 

I... .f . - m = 0, which is pure circular. Then the boundary aD is a circle p = PHH = Cte. 
: to g;: 

*z-?< .->.. 
1 

,o a .,fggc:, 
6, = -a, and one can easily obtain from the boundary conditions (44) that 4 = 1 and 

%,- P 
k = ~ l h  = kHH, q l  = p l/R qHH, where p ,  = 3.83 is the first root of the Bessel function 
JI(x);  c1 = - J0(pI) .  

While layer displacements are determined by the function u, the corresponding stresses 
caused by them are given by the displacement derivative u,. The sign of this derivative 
determines the type of stress : positive u, corresponds to a compression while negative 
uI corresponds to a local decompression or stretching of the layers. The disuibutions of the 

b displacement u and the stress u, along the z-axis for the harmonic with kHH = r / h  are plotted in 
: 
; figures 7a and b (curves I), respectively. The stress distribution clearly shows that this 

1 

Fig. 7. -Distribution of displacements u (a) and stresses u, (b) caused in the SmA cell by the first 
harmonic of the Helfrich-Hurault perturbation (curves 1)  and by t h e  second one (curves 2). 



harmonic can result only in a surface nucleation of TFCD since it causes displacements with 
maximum compression at one surface and maximum stretching at the other, and minimum 
stress at the middle plane of the sample. On the other hand, if the anchoring coefficient 
Al+ is sufficiently large, the surface nucleation requires very high free energy. Therefore, if . 

there exists some mode whose stresses correspond to the bulk TFCD nucleation (even if the 
critical field of such a mode is higher), the nucleation can go this way because bulk nucleation 
does not depend on Acr. A mode which is able to cause bulk nucleation turns out to be the 
harmonic with 4 = 1, m = 0, n = 2 and k = kg = 2 r l h  = 2 kHH. Corresponding displacement 
(- sin (2 r z lh ) )  and stress distributions are shown 'in figures 7a and b (curves 2). 

For P = 1, m = 0 and arbitrary n the part of the free energy quadratic in uo is proportional to 
K~~ + AX H' q2 + ~nk;,, which gives the stmdard critical field. HHH (see [22, 231 and 
Eq. (20)) and the wave number q, : 

Thus, since kB = 2 kHH, the critical field H2 of the second harmonic n = 2 is &times larger 
than that HHH for the first one with n = 1. 

Now let some field-induced layer displacements take place in the cell. It is natural to assume 
that the TFCD nucleation occurs when two conditfions are satisfied : 

(a) the size p o  of the stable TFCD is smaller then the radius P H H  = p ,lqh of the HH 
perturbation, i.e., 

where po is defined as the non-zero solution of the equation A, p + A2 P 2  + A 3  P 3  = 0 with 
coefficients defined by equations (25-30) and a 2 0 is some geometrical constant ; 

(b) the stress amplitude of the HH-instability exceeds some critical value u;. ,,, correspond- 
ing to the beginning of the dislocation creation, the process which is assumed to be responsible 
for layer percolation. 

We will consider first condition (a) for the first harmonic with n = 1, k = kHH which fits the 
idea of the surface TFCD nucleation. After finding po from the equation 
As,. , po + ASN, p i  + ASN, Pi = 0 and substituting-it into equation (46), it is not difficult to 
obtain the critical field 

12 wl ( l  + a ) 2  1 + a 
Ha. SN = ( 

p ,  r 3 I 2  
+-[A":" - ~2 ,I) 'I2 HHH , (47) 

P ?  

-2 
where HHH is defined by equation (45), o ,  = P - 2 - RIK, o2 = 3 + p - In &.' The < 
smallness of the second term within the rectangular brackets, ' Alh - enables one to 
simplify the last expression to the form 

r 

/- P I  t Ah 
5 

Ha. SN = ( ) ] 'I2 HHII (48) & 
12 w l ( l  + a )  r 3 I 2  

- 
c 

The critical field Hb. SN corresponding to condition (b) can be found by minimizing the total $. 

L 
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fiee energy f H H  dV with f H H  given by equation (421, with respect to the perturbation 

Hb, sN = HHH(l + 6' h2) ,  (49) 
# 

should assume that 
S ~ .  even after the 

for the instait 
geometrically. For 
n AFBN is, roughly 

ogeneous state is 
rocess. When the 

and k = k H H  is 

(45 j (&$ completed, the ring must go up unless it reaches the middle plane of the sample and thus a bulk 
; TFCD is formed. 

I ,q 
++$ 

As we know, however, if Au is large, the second harmonic with n = 2, k = k B  = 2 r / h  
z- 

lrger ; ; whose critical field does not depend on Au, can cause a direct bulk nucleation. The critical 
-% *i4 

- A -  
field H .  BN of this nucleation can be found by taking Au = 0 and H H H  to be & H H H  in 

.".r 

IJrne ,<L 

equation (48). It gives 
, . r 

The inequality Ha. BN s Ha. sN takes place approximately if the second term in equation (48) 

(46) . 
is larger than 1, i.e., 

with 

. , 
; the 

which, for our range of parameters, is the case when Au 5 0.6 erg/cm2. 
The principal h-dependence of the critical field of the TFCD nucleation due to the HH-effect 

coinsides with that of H H H I  i.e., - h- 'I2. For sufficiently thick cells, as it follows from 
equations (48) and (49), the corrections to the 11 4 law become important. For example, 
when the inequality (5 1) is fulfilled, H ,  SN does not depend on h for large h. On the other hand, 
for sufficiently thick samples equation (49) predicts that H,, sN increases with h. Finally, the 
scenario of the undulation-induced nucleation consists in appearance of the undulations when 
H = H H H  ; then the system waits until the field increases up to the larger value from 
Ha and Hb. which can produce the TFCD nucleation at the surface or in the bulk [if the 
inequality (5 1) is fulfilled]. Both Ha and H b  are expected to be higher than the H,, that defines 
the growth of the macroscopic domain, as can be clearly demonstrated using figure 6 and one 
of the conditions of nucleation, for example, equation (46). In accordance with equation (46). 
the nucleation starts when po c-- a, where 6 is the sire n of the Helfrich-Hurault 
perturbation in the plane of the cell. This condition is roughly equivalent to po s lo-' for 
typical cells of thickness h - (10 - 100) p.m. As can be seen from figure 6b, po a lo-' and 
thus the nucleation is achieved only for fields which are much higher than H,. 

The consideration given in sections 7 and 8 corresponds to the field-driven transitions. An 
analogous situation is expected for the strain-induced instability of SmA when the undulations 
are induced by mechanical stresses [34. 351. As was observed by Clark and Meyer [35], large 
displacenlents of the cell plates produce focal conic domains that presumably are preceded by 
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periodic undulations. The displacement rate, however, should be fast enough to prevent the 
reconstruction of the ideal homeotropic structure by moving dislocations. 

The Helfrich-Hurault mechanism is neither a unique nor the best way to create TFCD : as we 
saw, the nucleation field never can be smaller than HHH. There is in principle a possibility to 
nucleate the TFCD by using es&ntialy lower fields which are smaIl<r than H H H  or even smaller 
than H,,,. This possibility is brought about by bulk dust particles or by sugace roughness of the 
cell plates. It is important to stress that the^deformations created by mechanical irregularities 
are permanent in contrast to those created by the mechanical stresses of the cell with ideally flat 
plates. Moreover, the mechanism of TFCD nucleation due to irregularities is a general one and 
explains both the field-driven and anchoring-driven instabilities. 

9. Nucleation at irregularities. 

The main idea of this model is simple : the bulk or surface irregularity distorts the smectic 
layers and thus the initial state is characterized by some nonzero energy due to the B-term in 
equation (2) ; the nucleation of the TFCD means the replacement of the dilations by curvature 
deformations [the K-term in Eq. (211, which are generally less energetic. The last circumstance 
should decrease the energy barrier A F  *. Experimental observations (see 1161 and references 
therein) directly support the scenario of heterogeneous nucleation : it has been revealed that the 
focal conic domains appear along the dislocation sets rather than in dislocation-free regions. 

Let us consider a dust particle with biconical shapi of height 2 k' and radius R, embedded in 
the matrix of uniform SmA layers (Fig. 8a). The created deformations are relaxed by horizontal 

Fig. 8. -Dust particle of biconical shape in the SmA cell : (a) initial stare with distortions relaxed by 
dislocation loops ; (b) nucleation of TFCD. 
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loops surrounding the particle. The energy of one dislocation loop with radius 
rd is [29, 311 fo =  TAB^* rd/[, where 6 is a core radius and d is Burgers vector taken equal to 
one layer thickness. The radii of two successive loops. i and i + 1 are related, 

+  RIP. Thus the enejgy of all n = 2 Plil circular dislocations is 

Nonzero elastic energy Fdislr which is proportional to R, changes the energy of the initial 
state. Now instead of equation (8) for the initial state of the volume r a 2  h, where 

F o  = rr~aPdl&A + 2 ~ o ,  a2 - T AX H' a2(h/2 - P13);, 

or, since P 4 h- and a = ph, 

F~ = ( ~ ~ h P d t f ~  ) p + (2 TU, h2 - T AX H~ h312) p 2 .  q y :  (53) 
,:?;i,'.$ :- ..y>:. 

';:?lv 
..+& Now let us consider the TFCD nucleating at the dust particle. The axes of symmetry of the 
-i" ". 
..y..-7 . . TFCD and the dust particle are supposed to coinside. Within the area occupied at the particle 

. .- .01. .$y :. . .. . - . . 
, -".r: 

by the TFCD base (now of conical shape) the layers are oriented strictly normal to the particle 
. I,. . .- :,e:"~ ..- > 
. .>....K 

surface and thus no dislocations are required to fill the space (Fig. 8b). Absence of dislocation 
9;iyT' 
<,.?+: in the region occupied by the TFCD means that the surface energy at the interface 

.-.-z&f, :;*.: TFCD/particle can be taken as equal to zero (i-e., we do not consider specific anchoring at the 
' .;;".>' .' 

:L.r: surface of the particle ; however, it is evident that the tangential anchoring of the SmA 
'*X?,%. .. : . . .-.&-;. . ,-LiC: molecules at the particle would facilitate the nucleation). The biconical shape of the particle 

. ..:s:&';. .. . , . .. .. . allows us to recalculate the energy of the TFCD by simply changing the integration range for 
the angular parameter 8. The maximal value of 8 is defined by the slope PIR of the dust particle 
surface (Fig. 8b) and thus instead of condition (9) one has - 

f s r =z alsin 8 - f , arctg (2 alh) s 8 =s arctg (RIP ) . (54) 

The integration of the elastic, diamagnetic, and surface contributions [Eqs. (2). (3) and (5), 
respectively] using conditions (10) and (54), leads to the new expression for the free energy of 
the domain formation : 

0 BN, *is, = AF BN - ( ~KhPdlfA ) p - 

& Where AFB,  is defined by equation (17). For PIR 4 1 the corrections to the elastic and 
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diamagnetic contributions are small, of the order of PIR and (PIR )I, respectively. It allows us lo 
write the free energy expansion for p 4 1 in the form 

WBN,~YI  = (ABN, I   ad is^)^ + A B N . 2 ~ 2 + ' B N . ) p 3 + - ' .  = 

The last expression differs from the corresponding free energy for. the ideal cell without 
impurities only by the negative linear contribution (- Adis, = - pd12 7 r A  5 )  that is brought 
about by the nonzero dislocation energy of the initial state. The new negative contribution to 
A F B N ,  disl drastically decreases the height of the energy barrier, 

2 (ABN, 1 - ~dis1)~" - - 8 7 r 2 ~ 3 R  
hF B*N, disl ( p  - 2 - KIK - !dl2 .rrA 5 )3/2 , (57) 

3 & ( A B N , ~ ( " ~  3 

and thus 

when p 

satisfied 

increases the possibility of TFCD nucleation. The barrier even completely disappears - 
- 2 -  K/K<- Id . With d - 8 - A - 30 A, = 0, /3 - 4 - 10 the last situation is 

2 7 r A t  
for particles with height as small as 2 ! (20 - 60) d, ) i.e. 2 P - lo3 A. It simply 

means that bulk or surface irregularity can nucleate the TFCD even when the external field is 
absent. Since 6 and A diverge as one approaches the SmA to nematic transition, the probability 
of nucleation increases with temperature decrease. 

A similar consideration is valid for surface irregularity and the anchoring-driven transition. 
If the surface irregularity has a conical shape of height 4 and radius R, the calculation yields for 
the free energy 

2 
disl = ( A ~ ~ ,  I -Adis1 /2) P + ASN. 2 P + -.- 

= a 2 ~ h ( p  - 2 - - - -  K ' 27rAC 4d ) p + ~ K h ( ~ - 3 - p  Acrh + l n & )  p z + . . . ;  (58) 

the barrier 

is significantly reduced or even completely removed if 4 - lo3 A. 
In principle, one can consider also the stress (dislocation-free) mechanism of relaxation 

around the dust particle. As is well known [ l ,  21, the disturbance of radius R creates 
deformations which extend at distances L = R 2 1 ~  s R along the vertical axis [ l ,  21. Let us 
consider how the stresses caused by the surface conical bump could influence the anchoring- 
driven TFCD nucleation. The anchoring pr.openies of this bump are the same as those of the 
flat substrate. 

The stress contribution F ,,, to the energy of the initial state can be estimated as the B-term in 
equation (2). It has different behavior for R 4 JAh and R s &%-In the first case the volume 
of distortions is .rrR2 x ( R ~ I A  ), and one has from equation (2) 
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For R ,  f i  the volume of distortions is restricted by the cell plates and 

P 2  
P2 R ~ .  F ~ R ? = T K -  

2 A 2 h  
(6 1) 

AS follows from the two last equations, the stress contribution to the free energy of nucleation 
s c a I e s ~ 4  if R 4 f i  and thus does not change significantly the barrier of nucleation. For' 
R s- , Ah this contribution scales as p 2  and the resulting'barrier is : 

7r3 K 2 ( p  - 2 - EIK)' u z ~ ,  scr = 
4)Au) + 2 ~ F K ! ~ / A ~ - ~  ' 

( 6 2 )  

With the estimates above the desired height of the barrier ,, - '3 x 10- l 2  erg could be 
provided by irregularities with amplitude P - few micrometers. Thus the stress mechanism 
seems to be less effective than the dislocation one. 
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The relative importance of the linear and quadratic (or Fdisl and F,,) contributions will 
depend on the concrete geometry of dust particles or the cell surface and deserves separate 
consideration. Here it is important just to indicate that the inhomogeneity-nucleated TFCD will 
expand, u eating >> the dislocation loops or strains, up to the point when a = R.  For 
a s- R one should return to the a ideal n case because the matrix outside the domain consists 
of ideal parallel layers. Thus the TFCD will grow further if p * h < R, and will stop if 
p * h =- R.  The values of p * are defined by equations ( 3 2 )  and (35) for anchoring- and field- 
induced nucleation, respectively. For the field instability, for example, equation ( 3 5 )  shows 
that the irregularities with lateral size as small as R = 1 pm can satisfy condition 
p * h < R starting with fields = 130 kGs ; this field is smaller than the threshold of the 
undulation HH-instability (= 200 kGs for 100 pm cell [I]). On the other hand, in a real cell 
there are particular regions where effective R can be much larger than 1 pm : these regions are 
naturally created by the edges of the smectic sample or by so-called spacers which are used to 
fix the cell thickness. Thus in real samples we expect the appearance of the TFCDs for fields 
smaller than HHH. 

In conclusion of this section we briefly discuss one additional factor that can help to 
overcome the barrier AF& for small p -= 1 in the particular case of the lyotropic ferrosmectics 
considered in references [ 6 ,  361. This factor is an intrinsic one connected to the peculiarities of 
ferrosmectic structure, which can be schematized as a stack of alternating surfactant layers and 
thin films of ferrofluid [36 ] .  Evidently, the effect of the external field on the structure will be 
defined exclusively by the coupling with the ferrofluid layers. The pancake-like ferrofluid 
sheets are unstable in the normal field and will transform into elongated spindles with long 
axes along the field. The lamellar layers will follow this local transformation (because of finite 
adhesion), forming a TFCD with the ferrofluid spindle as a core. 

10. Conclusion. 

We have examined the possible scenarios of the nucleation of focal conic domains in SmA 
under the action of the surface tension anisotropy or an external field. The consideration is 
based on the calculation of the energy of the TFCD located in the restricted sample with finite 
thickness and surface anchoring. The energy of the TFCD is calculated as a function of the 
domain radius, cell thickness, splay and saddle-splay elastic constants. field strength, as well 
as the anisotropy in surface energy and permittivity. It is shown that the large-scale and small- 
scale behaviors of the focal conic domain state are principally different. 
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For small scales (i.e., focal conic domains with radius smaller that the cell thickness, 
p = alh >> 1) the expansion of the nucleation energy in a power series of p shows that the 
leading linear term is related to the elastic energy ; the driving forces (anchoring or field) enter 
only to the quadratic or cubic terms:-  respective!^. Since the elastic energy of the. defect is 
positive, the uniform and defect states are separated by an energy barrier. This barrier is too 
high'to be surmounted by thermal fluctuations for modest values of the field strength or the 
surface anisotropy. The same problem is shown to be important for the dislocation or grain- 
boundary model of field effects in the SmA. 

To explain numerous experimental observations df the TFCD nucleation we have used an 
idea that the nucleation is facilitated by local initial deformations of the layers. In principle, 
these 'deformations can be brought about either by the Helfrich-Hurault undulations (second- 
order transition) or by the mechanical inhomogeneities such as dust particles or surface 
roughness. The first scenario occurs in an ideal cell with highly uniform and flat plates ; its 
validity is limited by the case of the field-driven effect or fast mechanical stresses. An evident 
result of this model is that the threshold of the TFCD appearance cannot be smaller than the 
threshold of the Helfrich-Hurault instability. A more effective and general scenario seems to be 
the one with bulk or surface inhomogenities. Within the scope of this model, the nutleation of 
the TFCD replaces compressions by curvature deformations and thus the energy bamer is 
drastically reduced or even completely removed. With sufficiently large irregularities (of 
micron size) the nucleation of the focal conic domains can precede other expected instabilities, 
such as an undulation instability. Sample edges, dust particles, surface irregularities or spacers 
can serve as natural sources of the domain nucleation. 

For large scales (p >> 1 ) the growth of the TFCD is determined by the balance of the surface 
and field forces. The corresponding (( saturation ,> field H,, which is able to infinitely increase 
the size of the domain nuclei, typically turns out to be smaller than the Helfrich-Hurault 
threshold. It means that in real experiments with perfectly prepared and flat plates a single dust 
particle or surface irregularity gives rise to the formation of the TFCD which will expand and 
replace the initial uniform state, if H H,, (field instability) or H -= H,,, (surface instability). 
In the vicinity of the SmA-nematic phase transition the scenario of transitions can be different 
from that considered above if the dilation elastic constant B significantly decreases ; however, 
recent experiments [32] show that B remains quite large even in the vicinity of the transition. 

The present study requires additional investigations both experimental and theoretical. First, 
one can suggest special experiments devoted to careful characterization of (a) the distortions 
caused by dust particles or surface roughness ; (b) anisotropy of the surface energy. These two 
characteristics should define respectively the appearance and propagation of the TFCDs. 
Second, we give only a rough estimation of the elastic energy associated with the mechanical 
irregularities within the scope of continuum theory ; more work should be done on the 
relationship between the properties of the irregularities and the nucleation energy. Third, our 
theory is restricted by the TFCD scenario of instability ; it will be interesting to expand this 
study to other geometries of the domain defects. For example, with negative saddle-splay 
elastic constant a special type of FCD with positive Gaussian curvature of layers can arise ' 

[37, 381. Another possibility is a formation of parabolic FCDs [39]. Special attention should be 
paid also to the role of oily streaks, which are in fact the stripe analogs of the focal conics in the 
layered systems and show specific instabilities under the action of external fields [40, 411. 
Recent experiments 1181 demonstrate that the stripe domains can significantly change the 
growth pattern during the described first-order structural transition when p - 1 and the surface ' 

anchoring is strong enough (a few erg/cm2). 
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